Statistical Inference for Engineers



My Background

« Degrees in General and Aerospace Engineering: dynamics, control & aero
 AIRBUS (1.5 years) Fluid-Control-Structure Interaction

 McLaren F1 Team (4 years) Simulation Algorithms, Modelling, Optimisation,
Design of Wind Tunnel Experiments.

* Now working on a Statistical Machine Learning PhD at Cambridge.




UNCERTAINTY




Some Sources of Uncertainty

* Uncertainty due to noisy or faulty sensors.

« Uncertainty due to a parameter not being directly observed.

* Uncertainty due to test rigs of unknown fidelity.

* Uncertainty due to unmodelled effects.

« Uncertainty due to a limited amount of time to run numerical simulations.

 and many more...



Inference, Statistics and Machine Learning
Who is who?

* Inference: task of finding a coherent interpretation of incoming observations that
is consistent with both the observations and the prior information at hand.

« Statistics: related to Mathematics. Focuses on proofs and guarantees.

* Machine Learning: related to Computer Science. Focuses on practical
implementations.




Minimising the Squared Errors

* The engineers' preferred inference tool.

« Example: infer power and drag given 100 noisy accelerometer measurements.

— For instance using a linear model:
a=(-%)P—(5=pV?S)Cd

mV

— Minimise the squared errors:

Z (aMeasured ,—aModel,; (P ,Cd))?
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Minimising the Squared Errors

« Theoretical justification: if our model is linear and the noise in the measurements

is Gaussian, minimising the sum of the squared errors is equivalent to finding the
maximum likelihood estimator.

» Likelihood: how probable is the observed data for different settings of Power and
Drag?
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Beyond the Squared Errors

* Given what we already know about this car, we know that 693 HP and a Cd of
0.87 are both clearly too low.

* What levels of power and drag do we consider reasonable before seeing any
data?

* In other words, what is our prior belief about the values of power and drag?
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Beyond the Squared Errors

 We can combine our prior beliefs with the evidence provided by the observed

data to compute the posterior: the uncertainty in (P,Cd) after we have observed
the data.

* The posterior is not just a pair of numbers representing Power and Drag. It is a
representation of our beliefs about the actual values of the Power and the Drag.
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Modelling Uncertainty:
from Numbers to Probability Distributions

* We need a way to quantify degrees of belief: probability theory.

* We can consider it as an extension from logic (True,False) to a machinery that
allows us to reason about uncertain statements that are between True and False.

 Example:
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Standard Inference Problems

Regression:

— e.g. obtaining an AeroMap from a limited number of tunnel experiments.

Classification:

— e.g. finding which areas of an AeroMap are stalled

Dimensionality Reduction:

— e.g. finding a compact representation of the operating envelope of a car.

Parameter Estimation:

— e.g. estimating the value of tyre lateral stiffness.



Regression
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 We have measured lift and drag at a limited number of configurations:

— What is the value of lift and drag in configurations we didn't test?

— Given our measurements, what is the expected value of lap time with respect to the
baseline?

* Regression and exploration are related.




So, should we model uncertainty everywhere?

e Sometimes it is difficult!
 We may want to consider uncertainty just in some key areas.

 Some inference methods can be computationally demanding, but
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Canclusions

* “The applications are everywhere, because uncertainty is everywhere” Judea
Pearl, Turing Award winner, 15 March 2012.

« Statistical inference is used extensively in areas where there is a lot of data and
the need to make sense out of it: analysis of Internet data, genomics, speech
recognition...

» |If problems are formulated in a standard form we can then use many of the
already developed methods.
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