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The State of Big Data



Why probabilistic models for Big 
Data?

1. “If you don’t have to worry about overfitting, your 
model is likely too small.” (Welling)

2. For scientific problems, prior knowledge is usually 
available.

3. Not all data points inform all latent variables.

4. We can have big data with small N (e.g. 20 experiments, 
10 TB per experiment.)

5. How do you regularize models with complex 
dependencies with billions of parameters.



Trueskill
Xbox Live ranking 
system. Predict 
player skill

2,000,000 matches 
per day

10,000,000 players



Bing advertising

Predict expected click 
revenue for ads.

Requires ~10ms 
response times.

$832 million in annual 
revenue. Every percent 
accuracy matters.



Main considerations for the Big Data 
revolution

∙ Trading off Accuracy/Time/Data size.

∙ Large scale infrastructure.



Trading off Accuracy-Time-Data Size 

For a given computational budget, can we guarantee a 
level of inferential accuracy as data grows in size?

Two main approaches to achieve this:

∙ Divide and conquer: divide in subproblems and piece 
solutions together.

∙ Algorithmic weakening: hierarchy of algorithms 
ordered by computational complexity.

(Jordan, 2013, Bernoulli 19(4), 1378–1390)



STOCHASTIC VARIATIONAL INFERENCE

I Bringing the power of stochastic gradient descent to
variational inference

I For a complete understanding of SVI, three components
are required

I Stochastic Gradient Descent
I Natural Gradients
I Variational Inference
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STOCHASTIC VARIATIONAL INFERENCE

SVI applies to models of the following form:
I Local and global latent parameters

I Conjugate distributions
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STOCHASTIC GRADIENT DESCENT

The poster child of large scale optimization.
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STOCHASTIC GRADIENT DESCENT

The trade-offs of large scale learning:

ε = E
[
E(f̄n)− E(fn)

]
+ E [E(fn)− E(f ∗F)] + E [E(f ∗F)− E(f ∗)]

(1)

I f ∗ is the optimal function
I f ∗F is the best function in our function class
I fn is the empirical risk minimizing function
I f̄n is the approximation to fn from early stopping of

optimization
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The trade-offs of large scale learning:

ε = E
[
E(f̄n)− E(fn)

]
+ E [E(fn)− E(f ∗F)] + E [E(f ∗F)− E(f ∗)]

(2)
ε = εoptimization + εestimation + εapproximation

I f ∗ is the optimal function
I f ∗F is the best function in our function class
I fn is the empirical risk minimizing function
I f̄n is the approximation to fn from early stopping of

optimization
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STOCHASTIC GRADIENT DESCENT

GD SGD
Time per iteration n 1

Iterations to accuracy ρ log 1
ρ

1
ρ

Time to accuracy ρ n log 1
ρ

1
ρ

Time to excess error ε 1
εα

log2 1
ε

1
ε

Line 4 comes from mystical frequentist bounds with α ∈ [1, 2].
It assumes strong convexity or “certain assumptions” and also
that we have optimally traded off between the three forms of
error.
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STOCHASTIC GRADIENT DESCENT

But convergence is easy to assure. All that is required is the
following constraints on the step size schedule:∑

ρt =∞∑
ρ2

t <∞
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STOCHASTIC VARIATIONAL INFERENCE

I Bringing the power of stochastic gradient descent to
variational inference

I For a complete understanding of SVI, three components
are required

I Stochastic Gradient Descent X
I Natural Gradients
I Variational Inference
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NATURAL GRADIENTS

Natural gradients are a sensible choice of gradients that can be
used when optimizing probability distributions. Naturally.
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NATURAL GRADIENTS

With gradient descent, we want to optimize through some
“nice” space with respect to the function we are optimizing. It
would be nice if it was pretty smooth and well behaved, and the
length-scale over which the function tends to vary stays
relatively stable.
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NATURAL GRADIENTS

When optimizing a probability distribution, our loss function is
a function of the distribution. But we represent our distributions
in terms of their parameters. Hopefully our loss function is
“nice” wrt the probability distribution, but unless we have very
specifically chosen the parameterization for the loss function
we are optimizing, optimizing in parameter space will probably
make things worse.

θ → p(θ)→ f (p(θ))
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NATURAL GRADIENTS

Example: Normal distribution with standard parameterization

Alex Davies and Roger Frigola 13 / 43



NATURAL GRADIENTS

A step size of 10 in parameter space takes us from
N (0, 10000)→ N (10, 10000) while a step size of 1 in
parameter space can take us from N (0, 1)→ N (1, 1)
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NATURAL GRADIENTS

When we are optimizing a probability distribution, we want to
take nice consistent steps in “probability space”. ie from one
step to another, we want to have moved a consistent distance. A
sensible measure of distance for probability distributions is the
symmetrized KL divergence.
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NATURAL GRADIENTS

So how about ....
Instead of finding the direction

arg max
dθ

f (θ + dθ) where ‖dθ‖ < ε

we go for

arg max
dθ

f (θ + dθ) where Dsym
KL (θ, θ + dθ) < ε
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So how about ....
Instead of finding the direction

arg max
dθ

f (θ + dθ) where ‖dθ‖ < ε

we go for

arg max
dθ

f (θ + dθ) where Dsym
KL (θ, θ + dθ) < ε

To do this, we can make a linear transformation of our space so
that ‖dθ̃‖ = Dsym

KL (θ, θ + dθ)
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NATURAL GRADIENTS

It turns out that you can do this by using the inverse of the
Fisher information matrix G as the linear transformation.

∇̂f = G−1∇f (3)

Now we have a sensible optimization step that’s independent of
the parameterization of our distribution.
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STOCHASTIC VARIATIONAL INFERENCE

I Bringing the power of stochastic gradient descent to
variational inference

I For a complete understanding of SVI, three components
are required

I Stochastic Gradient Descent X
I Natural Gradients X
I Variational Inference
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VARIATIONAL INFERENCE

Approximate the full distribution with one in a “nice” class, that
we can calculate with easily.

Q(θ|φ) ≈ P(θ|X)
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VARIATIONAL INFERENCE

Approximate the full distribution with one in a “nice” class, that
we can calculate with easily.

Q(θ|φ) ≈ P(θ|X)

We need to find the value of φ that makes Q(θ|φ) as close as
possible to P(X|θ).
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VARIATIONAL INFERENCE

We already know the go-to measure for distance between
distributions, KL divergence. So we want to minimize:

DKL (Q(θ|φ),P(θ|X))
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VARIATIONAL INFERENCE : KL-DIVERGENCE

We already know the go-to measure for distance between
distributions, KL divergence. So we want to minimize:

DKL (Q(θ|φ),P(θ|X)) = EQ [log Q(θ|φ)]− EQ [log P(θ|X)]
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VARIATIONAL INFERENCE : KL-DIVERGENCE

We already know the go-to measure for distance between
distributions, KL divergence. So we want to minimize:

DKL (Q(θ|φ),P(θ|X)) = EQ [log Q(θ|φ)]− EQ [log P(θ|X)]

DKL (Q,P) = EQ [log Q(θ|φ)]− EQ [log P(θ,X)]︸ ︷︷ ︸
-ELBO

+ log P(X)︸ ︷︷ ︸
Marginal likelihood
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VARIATIONAL INFERENCE : KL-DIVERGENCE

DKL (Q,P) = EQ [log Q(θ|φ)]− EQ [log P(θ,X)]︸ ︷︷ ︸
-ELBO

+ log P(X)︸ ︷︷ ︸
Log marginal likelihood

1. Since log P(X) is independent of φ, we can minimize the
KL by maximizing the ELBO

2. Since the KL is always positive, the ELBO is a
lower-bound on the log marginal likelihood
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VARIATIONAL INFERENCE : KL-DIVERGENCE

To optimize the parameters of the variational distribution φ,
optimize the ELBO using your favourite gradient method.

L(φ) = EQ [log P(θ,X)]− EQ [log Q(θ|φ)]
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STOCHASTIC VARIATIONAL INFERENCE

I Bringing the power of stochastic gradient descent to
variational inference

I For a complete understanding of SVI, three components
are required

I Stochastic Gradient Descent X
I Natural Gradients X
I Variational Inference X
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STOCHASTIC VARIATIONAL INFERENCE

The derivative of the ELBO in a conjugate, global and local
variable model:

∇λL(φ) = G(EQ [η(x, z, α)]− λ) (4)
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STOCHASTIC VARIATIONAL INFERENCE

The derivative of the ELBO in a conjugate, global and local
variable model:

∇λL(φ) = G(E [η(x, z, α)]− λ) (5)

That G looks like a total hassle to calculate. (Quadratic in
number of variational parameters).
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STOCHASTIC VARIATIONAL INFERENCE

The derivative of the ELBO in a conjugate, global and local
variable model:

∇λL(φ) = G(E [η(x, z, α)]− λ) (6)

That G looks like a total hassle to calculate. (Quadratic in
number of variational parameters).

∇̃λL(φ) = G−1G(E [η(x, z, α)]− λ) (7)
= E [η(x, z, α)]− λ (8)
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STOCHASTIC VARIATIONAL INFERENCE

The natural derivative of the ELBO in a conjugate, global and
local variable model:

∇̃λL(φ) = E [η(x, z, α)]− λ (9)
= α + N(Eφi [t(xi, zi)], 1)− λ (10)

(t are the sufficient statistics)
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STOCHASTIC VARIATIONAL INFERENCE

Breather slider.
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GAUSSIAN PROCESSES WITH INDUCING POINTS
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GAUSSIAN PROCESSES WITH INDUCING POINTS

SVI applies to models of the following form:
I Local and global parameters X
I Conjugate distributions X
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STOCHASTIC VARIATIONAL INFERENCE FOR GPS

In order to apply stochastic variational inference to GPs, the
inducing points from sparse GPs become our global variational
parameters. Demo time!
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LARGE SCALE GRAPHICAL MODELS

Many of the hardest things about scaling a system to truly big
data are actually engineering challenges that come from
distributed computation.

1. Shared memory distribution
2. Communciation
3. Synchronization
4. Fault tolerance

This shouldn’t be our job.
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LARGE SCALE GRAPHICAL MODELS

Hadoop was the first excellent programming paradigm for big
data.
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LARGE SCALE GRAPHICAL MODELS

You use a restricted programming structure, Map-Reduce, and
everything else just magically works.

Map-Reduce turns out to be very useful for Data processing
tasks but not so much for Machine learning.
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LARGE SCALE GRAPHICAL MODELS

An alternative to Map-Reduce is Bulk Synchronous Processing
(BSP), which is implemented in Giraph and GraphLab
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LARGE SCALE GRAPHICAL MODELS

The power of these frameworks are in their simplicity. Rather
than specifying a map and a reduce function you simply specify
a node function. At each iteration a node can perform local
computations, recieve messages along it’s edges from the
previous round of computation and send message out along it’s
edges.
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Page rank code
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LARGE SCALE GRAPHICAL MODELS

Summary: If you can write an algorithm that iteratively
computes locally on nodes in a graph, you can use Giraph and
GraphLab and scale to billions of nodes without every knowing
a thing about parallel architecture.
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MCMC for Big Data

Conventional wisdom: MCMC not suited for Big Data.

Is MCMC the optimal way to sample a posterior for large data
sets and limited computation time?



MCMC

Data y , unknown parameter θ

GOAL: sample posterior

p(θ|y) ∝ p(y |θ) p(θ)

where p(y |θ) =
∏N

i=1 p(yi |θ)

by obtaining a set {θ1, θ2, ..., θT} distributed according to
p(θ|y).

I = Ep(θ|y)[f (θ)] ≈ 1
T

T∑
t=1

f (θt ), with θt ∼ p(θ|y)



Metropolis-Hastings

Simple algorithm to generate a Markov chain with a given
stationary distribution.

Start with θ0

1. Draw candidate θ′ ∼ q(θ′|θt ).

2. Compute acceptance probability

Pa = min(1,
p(θ′|y) q(θt |θ′)
p(θt |y) q(θ′|θt )

)

3. Draw u ∼ Uniform[0,1]. If u < Pa set θt+1 ← θ′ otherwise
set θt+1 ← θt .

PROBLEM: evaluating p(θ|y) is O(N).



Bias and Variance

Samples can be used to compute expectations wrt the
posterior

I = Ep(θ|y)[f (θ)]

I ≈ Î =
1
T

T∑
t=1

f (θt )

After burn-in, Î is an unbiased estimator of I

Echains [̂I] = I

Varchains [̂I] = σ2
f
τ

T



New Paradigm: Accept Bias - Reduce Variance

If we can sample faster, T grows and the variance
reduces.

Risk is useful to study bias/variance trade-off

R = Echains[(I − Î)2] = B2
ε + Vε

The setting of ε that minimises risk depends on available
computation time.

Traditional MCMC setting assumes T →∞, best strategy is to
have no bias since variance will go down to zero.



Existing Methods

I Use mini-batches of data and omit MH acceptance test

Stochastic Gradient Langevin Dynamics (Welling and Teh, 2011) and
Stochastic Gradient Fisher Scoring (Ahn, Koratikkara and Welling,
2012)

I Approximate MH Acceptance test

(Koratikkara, Chen and Welling, 2014) and (Bardenet, Doucet and
Holmes, 2014)



Approximate MH Acceptance Test

Acceptance probability

Pa = min(1,
p(θ′|y) q(θt |θ′)
p(θt |y) q(θ′|θt )

)

O(N) computation to obtain one bit of information.

Options:

I Use unbiased estimators of the likelihood that use only a
subset of data→ high variance.

I Reformulate MH acceptance test as a statistical decision
problem.



Approximate MH Acceptance Test

Equivalent reformulation of MH acceptance test

1. Draw u ∼ Uniform[0,1].

2. Compute

µ0 =
1
N

log(u
p(θt ) q(θ′|θt )

p(θ′) q(θt |θ′)
)

µ =
1
N

N∑
i=1

li , li = log
p(yi |θ′)
p(yi |θt )

3. If µ > µ0 set θt+1 ← θ′ otherwise set θt+1 ← θt .

This looks like a hypothesis test!



Approximate MH Acceptance Test

Approximate µ with a random subset of the data

µ ≈ l̄ =
n∑

j=1

lj , lj = log
p(yj |θ′)
p(yj |θt )

(1)

sl =

√
(l̄2 − (̄l)2)

n
n − 1

, Standard deviation of l (2)

s̄l =
sl√
n

√
1− n − 1

N − 1
, Standard deviation of l̄ (3)

Test statistic

t =
l̄ − µ0

s̄l

If n is large enough for Central Limit Theorem to hold, and
µ = µ0 t follows a standard Student-t dist. with n-1 DOF.



Approximate MH Acceptance Test

If 1− Φn−1(|t |) < ε, µ is statistically significantly different from
µ0. ( where Φn−1 is a Student-t cdf)

Then, if 1− Φn−1(|t |) < ε, the approximate MH test becomes: if
l̄ > µ0 set θt+1 ← θ′ otherwise set θt+1 ← θt .

If the test is not significant at a level ε we draw more samples
and recompute t .



Recap: Approximate MH Acceptance Test

Can often make confident decisions even when n < N.

Saves time that can be used to draw longer chains and hence
reduce variance.

I High ε⇒ High bias, fast

I Low ε⇒ Low bias, slow (high n required)

ε is a knob to trade off bias and variance.



Optimal Sequential Test Design

How to choose the parameters of the algorithm?

I Choose initial mini-batch size ≈ 500 for Central Limit
Theorem to hold.

I Keep ε as small as possible while maintaining low average
data use.



Experiments: Independent Component
Analysis

Posterior over unmixing matrix.

Risk in mean Amari distance to “ground truth”.



Experiments: Stochastic Gradient Langevin
Dynamics (SGLD) + Approximate MH Test

Linear regression with Laplace prior. SGLD can be thrown off
track in areas of large gradients and low density.


