

Bayesian Nonparametric Nonlinear System Identification

A quick overview

Roger Frigola¹

 1 University of Cambridge, UK

Two Different Approaches to Modelling

Maximum Likelihood (or PEM) + Regularisation

► Optimisation to find point estimates of parameters given the data.

$$egin{aligned} heta^* &= rg \min_{ heta} L(\mathcal{D}, heta) + J(heta) \ x_{t+1} &= f(x_t, heta^*) \end{aligned}$$

Bayesian

 Averaging over parameter distributions to find distributions over predictions

$$p(x_{t+1} \mid x_t, \mathcal{D}) = \int f(x_{t+1} \mid x_t, \theta) \ p(\theta \mid \mathcal{D}) \ d\theta$$

Why Bayesian?

- ► *No overfitting* because there is no fitting!
- ▶ No need to artificially limit the complexity of the models.
- Even with a finite set of perfect observations we may still be uncertain about our model/parameters.

Why Nonparametric?

In a parametric model

$$p(x_{t+1} \mid x_t, \theta, \mathcal{D}) = p(x_{t+1} \mid x_t, \theta)$$

In a nonparametric model, we perform inference on the space of functions, not parameters!

- ▶ Data is not condensed in a finite set of parameters.
- ► Flexibility not constrained by choice of parametric form.
- ► Nonparametric model can be very complex if the data supports this complexity.

Parallels between Bayesian Approach and Regularisation

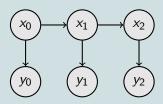
- ► Prior ~ Regulariser.
- ▶ Inductive bias. There is no inference without assumptions
- One should not be afraid of priors: they are a very honest way to make assumptions that in other methods may be hidden inside algorithms.

Generative Models

A model that describes the data that can be observed from the system. It allows us to:

- ► Generate "fantasies" invented by the model.
- ► Condition on actual observations and infer the latent quantities.

$$egin{aligned} p(a) &= \mathrm{Uniform}(-1,1) \ p(x_0) &= \mathcal{N}(0,1) \ p(x_{t+1}) &= \mathcal{N}(ax_t,1) \ p(y_t) &= \mathcal{N}(x_t,1) \end{aligned}$$



Bayesian Nonparametric NARX Models

Take a NARX model

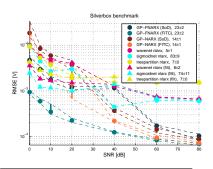
$$y_t = f(y_{t-1}, y_{t-2}, \cdots, u_{t-1}, \cdots)$$

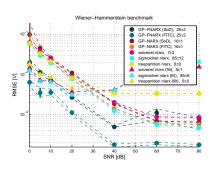
and learn f in a nonparametric fashion, e.g. putting a Gaussian process prior over it.

Problem: this is an errors-in-variables regression since the inputs to f are noisy.

System Identification with Bayesian Nonparametric NARX Models with Filtered Regressors ¹

- ► Treating the model in a probabilistically consistent way is hard.
- ► Pragmatic solution: pre-process signals to reduce noise and put it as a regression problem.

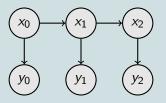




¹work with Carl E. Rasmussen.

Bayesian Nonparametric Nonlinear State-Space Models

Nonparametric model for the state transition. Problem: states are not observed so this is not straightforward regression.



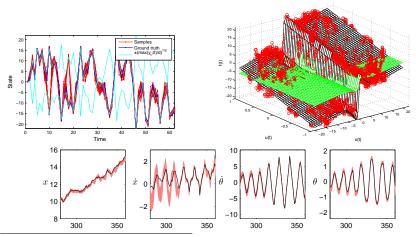
Example:

(this is the true, but unknown to us, system description)

$$x_{t+1} = ax_t + bx_t/(1 + x_t^2) + cu_t + v_t, \quad v_t \sim \mathcal{N}(0, q)$$

 $y_t = dx_t^2 + e_t, \quad e_t \sim \mathcal{N}(0, r)$

Sys. Id. with Bayesian Nonparametric State-Space Models using Gaussian Processes and Particle MCMC ²



²work with Fredrik Lindsten, Thomas B. Schön and Carl E. Rasmussen.

