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Two Different Approaches to Modelling

Maximum Likelihood (or PEM) + Regularisation

» Optimisation to find point estimates of parameters given the data.
0* = argmin L(D, 0) + J(6)
0

Xt+1 — f(Xt,H*)

Bayesian

» Averaging over parameter distributions to find distributions over
predictions

p(xt+1 | xt, D) = /f(xH_l | x¢,0) p(6 | D) do
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Why Bayesian?

» No overfitting because there is no fitting!
» No need to artificially limit the complexity of the models.

» Even with a finite set of perfect observations we may still be
uncertain about our model /parameters.
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Why Nonparametric?

In a parametric model

P(xe41 | xt, 0, D) = p(xe41 | xt, 0)
In a nonparametric model, we perform inference on the space of
functions, not parameters!
» Data is not condensed in a finite set of parameters.
» Flexibility not constrained by choice of parametric form.

» Nonparametric model can be very complex if the data supports
this complexity.
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Parallels between Bayesian Approach and Regularisation

» Prior ~ Regulariser.
» Inductive bias. There is no inference without assumptions

» One should not be afraid of priors: they are a very honest way to
make assumptions that in other methods may be hidden inside

algorithms.
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Generative Models

A model that describes the data that can be observed from the system.
It allows us to:

» Generate “fantasies” invented by the model.

» Condition on actual observations and infer the latent quantities.

p(a) = Uniform(—1,1) @ ° e
= N(xt,1) @ @ @

JNIVERSITY OF

AMBRIDGE



Bayesian Nonparametric NARX Models

Take a NARX model

Yt = f(ytflayt727"' s Ut—1, - )

and learn f in a nonparametric fashion, e.g. putting a Gaussian process
prior over it.

Problem: this is an errors-in-variables regression since the inputs to f
are noisy.
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System ldentification with Bayesian Nonparametric

NARX Models with Filtered Regressors *

» Treating the model in a probabilistically consistent way is hard.
» Pragmatic solution: pre-process signals to reduce noise and put it
as a regression problem.

Silverbox benchmark ‘Wiener-Hammerstein benchmark
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Bayesian Nonparametric Nonlinear State-Space Models

Nonparametric model for the state transition. Problem: states are not
observed so this is not straightforward regression.

Example:

(this is the true, but unknown to us, system description)

Xep1 = axe + bxe /(1 + x2) + cuy + vi,  vi ~N(0,q)
yt:dXt2+et, etNN(07r)
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Sys. Id. with Bayesian Nonparametric State-Space

Models using Gaussian Processes and Particle MCMC 2
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2work with Fredrik Lindsten, Thomas B. Schén and Carl E. Rasmussen.
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