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Machine Learning 

• Create models based on data 
to make inferences/predictions.

• Based on statistics and 
computing.

• Reality is noisy and uncertain.

• Create realities that had never 
existed before.

• Based on physics.

• Reality is mostly deterministic.

Engineering



My Background

• Degrees in General and Aerospace Engineering

• AIRBUS (1.5 years) Fluid-Control-Structure Interaction

• McLaren F1 Team (4 years) Simulation, Modelling, 
Optimisation,

• PhD in Machine Learning

• Consulting at Ferrari F1, Red Bull F1, NZ America's Cup 
team



Outline

• Model-based Machine Learning

• Bayesian Inference

• Experiment Design and Optimisation

• The Future?



Model-Based Machine Learning

• Don't rely only on data. Use the knowledge we have about 
the world!

Make customised assumptions!



Model-Based Machine Learning

Childhood Asthma (Bishop et al.)



Bayesian Inference for Engineering. Why?



Introduction to Bayesian Modelling and
Inference

Uses probability to quantify uncertainty.

Related to information rather than repeated trials.

Uncertainty is subjective, it depends on what we have
seen.



Subjective Uncertainty



Subjective Uncertainty

Stanford’s self-driving car for the DARPA Urban Challenge (2007).



Bayesian Inference of Power and Drag

Infer power and drag based on noisy acceleration
measurements using a simple inertial and aerodynamic model

at =
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e.g. with Gaussian noise
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D = {y1, . . . , yN ,V1, . . . ,VN}



Bayesian Inference of Power and Drag

Infer power and drag based on noisy acceleration
measurements using a simple inertial and aerodynamic model

GOAL: find probability distribution of unknown parameters
given data

p(θ | D) = p(D | θ) p(θ)
p(D)

p(θ | D) ∝ p(D | θ) p(θ)



Bayesian Inference of Power and Drag

Infer power and drag based on noisy acceleration
measurements using a simple inertial and aerodynamic model
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Bayesian Inference of Power and Drag

Infer power and drag based on noisy acceleration
measurements using a simple inertial and aerodynamic model
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Bayesian Inference of Power and Drag

Infer power and drag based on noisy acceleration
measurements using a simple inertial and aerodynamic model

620 640 660 680 700 720 740 760
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Power [HP]

C
d

 

 

True

min error2

Likelihood
Prior
Posterior p(θ | D)



Bayesian Inference

One could say that we have used the prior as a regulariser to
solve

θ∗ = arg min
θ

L(θ,D) + J(θ)

But, we were simply looking for the posterior: p(θ | D).

No optimisation!

The posterior represents our uncertainty and tells us how to
average different models.



Bayesian Inference

What is the outcome of Bayesian inference?

Thomas’ indoor localisation example.

Posterior over parameters→ posterior over identified
systems.

In fact, we can find posteriors over many different kinds of
objects: functions, genetic trees, English language sentences,
etc.



Bayesian Inference: Making Predictions

The posterior represents our uncertainty over the
parameters.

Any prediction can be found by averaging over the
posterior

p(LapTime | D) =
∫

p(LapTime, θ | D) dθ

=

∫
p(LapTime | θ) p(θ | D) dθ.



Making Decisions Under Uncertainty

Bayesian inference provides probability distributions.

But, often, we can only take one action.

One solution: take the action that minimises the expected loss
(aka risk) under the uncertainty provided by Bayesian
inference.

aopt = arg min
a

∫
Loss(a, θ)p(θ | D)dθ



Making Decisions Under Uncertainty
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Over-fitting and Counting Parameters

Bayesian methods do not overfit because there is no
fitting!

Inference is based on integration, i.e. averaging.

There is no statistical price to pay for adding more
parameters.

Nonidentifiability is not a problem when making
predictions.



Experiment Design and Optimisation

• In engineering we can run simulations or make prototypes.

• Which simulations to run? What prototypes to build?

• What is our goal?

• Following slides from Ryan Adams, A Tutorial on Bayesian 
Optimization for Machine Learning (2014).
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The Bayesian Optimization Idea
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The Bayesian Optimization Idea
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The Bayesian Optimization Idea
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Examples of GP Covariances
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GPs Provide Closed-Form Predictions
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Probability of Improvement
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Expected Improvement
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GP Upper (Lower) Confidence Bound
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Distribution Over Minimum (Entropy Search)
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Illustrating Bayesian Optimization



Illustrating Bayesian Optimization



Illustrating Bayesian Optimization



Illustrating Bayesian Optimization



Illustrating Bayesian Optimization



Illustrating Bayesian Optimization



Illustrating Bayesian Optimization



Why Doesn’t Everyone Use This?

‣ Fragility and poor default choices.  
Getting the function model wrong can be catastrophic.!

‣ There hasn’t been standard software available.  
It’s a bit tricky to build such a system from scratch.!

‣ Experiments are run sequentially.  
We want to take advantage of cluster computing.!

‣ Limited scalability in dimensions and evaluations.  
We want to solve big problems.

These ideas have been around for decades.!
Why is Bayesian optimization in broader use?



Expected Improvement per Second



Expected Improvement per Second



Expected Improvement per Second



Expected Improvement per Second



Expected Improvement per Second



Expected Improvement per Second

CIFAR10: Deep convolutional neural net (Krizhevsky)  
Achieves 9.5% test error vs. 11% with hand tuning.
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New Directions for Bayesian Optimization

Finding new!
organic materials

Designing DNA for!
protein affinities

Optimizing robot!
control systems

Improving turbine!
blade design



Challenges and Perspectives

• Applying statistical methods to the global design process of 
a large engineering project is very difficult. 

• We can attack many very useful smaller problems.

• Culture change: a point estimate shouldn’t be a valid 
answer anymore!



The Future of ML in Engineering?

• Probabilistic Programming for model-based ML

1. Write down model with prior knowledge (e.g. science).

2. Run automated inference engine.

3. Analyse results, improve model and iterate.

• Causality

Lopez-Paz et al. (2015)



Thank You!
roger@rogerfrigola.com


