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Machine Learning Engineering

Create models based on data * Create realities that had never
to make inferences/predictions. existed before.

Based on statistics and  Based on physics.

computing.

* Reality is mostly deterministic.
Reality is noisy and uncertain.



My Background

* Degrees in General and Aerospace Engineering
 AIRBUS (1.5 years) Fluid-Control-Structure Interaction

* MclLaren F1 Team (4 years) Simulation, Modelling,
Optimisation,

* PhD in Machine Learning

* Consulting at Ferrari F1, Red Bull F1, NZ America's Cup
team
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Model-Based Machine Learning

* Don't rely only on data. Use the knowledge we have about
the world!
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Make customised assumptions!



Model-Based Machine Learning

Childhood Asthma (Bishop et al.)
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Bayesian Inference for Engineering. Why?
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Introduction to Bayesian Modelling and
Inference

Uses probability to quantify uncertainty.
Related to information rather than repeated trials.

Uncertainty is subjective, it depends on what we have
seen.



Subjective Uncertainty
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Subjective Uncertainty




Bayesian Inference of Power and Drag

Ses -

Infer power and drag based on noisy acceleration
measurements using a simple inertial and aerodynamic model
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Bayesian Inference of Power and Drag

< opmsr— e

Infer power and drag based on noisy acceleration
measurements using a simple inertial and aerodynamic model

GOAL: find probability distribution of unknown parameters

given data D 19) p(6)
_ p(D|0)p(0

p(¢ | D) oc p(D | ) p(0)



Bayesian Inference of Power and Drag

< Crpmsr— >

Infer power and drag based on noisy acceleration
measurements using a simple inertial and aerodynamic model
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Bayesian Inference of Power and Drag

< Crpmsr— >

Infer power and drag based on noisy acceleration
measurements using a simple inertial and aerodynamic model
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Bayesian Inference of Power and Drag

< Crpmsr— >

Infer power and drag based on noisy acceleration
measurements using a simple inertial and aerodynamic model
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Bayesian Inference

One could say that we have used the prior as a regulariser to
solve
0* =argmin L(0,D)+ J(0)
0

But, we were simply looking for the posterior: p(6 | D).
No optimisation!

The posterior represents our uncertainty and tells us how to
average different models.



Bayesian Inference

What is the outcome of Bayesian inference?
Thomas’ indoor localisation example.

Posterior over parameters — posterior over identified
systems.

In fact, we can find posteriors over many different kinds of
objects: functions, genetic trees, English language sentences,
etc.



Bayesian Inference: Making Predictions

The posterior represents our uncertainty over the
parameters.

Any prediction can be found by averaging over the
posterior

p(LapTime | D) = /p(LapTime,9 | D) do

_ / p(LapTime | ) p(6 | D) do.



Making Decisions Under Uncertainty

Bayesian inference provides probability distributions.
But, often, we can only take one action.

One solution: take the action that minimises the expected loss
(aka risk) under the uncertainty provided by Bayesian
inference.

aopt = argmin /Loss(a, 0)p(0 | D) do
a



Making Decisions Under Uncertainty
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Over-fitting and Counting Parameters

Bayesian methods do not overfit because there is no
fitting!

Inference is based on integration, i.e. averaging.

There is no statistical price to pay for adding more
parameters.

Nonidentifiability is not a problem when making
predictions.



Experiment Design and Optimisation

* In engineering we can run simulations or make prototypes.
* Which simulations to run? What prototypes to build?

 What is our goal?

* Following slides from Ryan Adams, A Tutorial on Bayesian
Optimization for Machine Learning (2014).



The Bayesian Optimization Idea
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The Bayesian Optimization Idea
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The Bayesian Optimization Idea
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The Bayesian Optimization Idea
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The Bayesian Optimization Idea
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The Bayesian Optimization Idea
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The Bayesian Optimization Idea
¥
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Where should we evaluate next

in order to improve the most?



The Bayesian Optimization Idea
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The Bayesian Optimization Idea
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The Bayesian Optimization Idea
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Examples of GP Covariances

Squared-Exponential | Matérn

Periodic
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GPs Provide Closed-Form Predictions
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Probability of Improvement
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Expected Improvement

3_

2




GP Upper (Lower) Confidence Bound
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Distribution Over Minimum (Entropy Search)
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[llustrating Bayesian Optimization
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[llustrating Bayesian Optimization
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[llustrating Bayesian Optimization
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[llustrating Bayesian Optimization
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Why Doesn’t Everyone Use This?

These ideas have been around for decades.
Why is Bayesian optimization in broader use?

» Fragility and poor default choices.
Getting the function model wrong can be catastrophic.

» There hasn’t been standard software available.
[t’s a bit tricky to build such a system from scratch.

» Experiments are run sequentially.
We want to take advantage of cluster computing.

» Limited scalability in dimensions and evaluations.
We want to solve big problems.



Expected Improvement per Second
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Expected Improvement per Second
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Expected Improvement per Second




Expected Improvement per Second
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Expected Improvement per Second
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Expected Improvement per Second

Classification Error

CIFAR10: Deep convolutional neural net (Krizhevsky)
Achieves 9.5% test error vs. 11% with hand tuning.
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New Directions for Bayesian Optimization

l - Massachusetts
Institute of
Technology

= Optimizing robot
Finding new control systems
BB Massachusetts
organic materials l [ I Instiute of
echnology Eﬁ BROAD
INSTITUTE

- Designing DNA for
Improving turbine protein atfinities
blade design



Challenges and Perspectives

* Applying statistical methods to the global design process of
a large engineering project is very difficult.

 We can attack many very useful smaller problems.

* Culture change: a point estimate shouldn’t be a valid
answer anymore!



The Future of ML in Engineering?

* Probabilistic Programming for model-based ML

1. Write down model with prior knowledge (e.g. science).
2. Run automated inference engine.

3. Analyse results, improve model and iterate.

* Causality

:-

>IN

CACECRO

Lopez-Paz et al. (2015)



Thank Youl!



