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What is Control?

* Sensing + Computation + Actuation
* Goals: Performance, Stability, Robustness.

* Demo


http://youtu.be/8By2AEsGAhU?t=40s

Canonical Control Problems

* Regulator problem: we want to keep the system at some nominal
operating point regardless of external disturbances.

* End-point control problem: we want to reach a target operating point
from our current one.

* Servomechanism problem: we want to control the system to follow some
path.




Control vs. Planning

* The boundary between planning and
control is not always clear.

* Roughly, planning is strategic whereas
control is tactical.




Dynamical Systems

* Dynamic(al) system: system whose behaviour changes over time, often in
response to external stimulation or forcing.

 State: collection of variables that summarise past information of a system
for the purpose of predicting the future.

* Deterministic systems defined via ODEs or difference equations
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State Space and Phase Portraits

 State space: set of all possible states.

* Phase portrait: vector field showing the dynamics of a non-actuated

system: .
&= f(2, Ufired)

* Predicting the future equates to solving an initial value problem

x(t) = x(0) + /0 @dt = (0 / f(x,u)d
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Linear Systems

* Enormous amounts of literature.
* Very useful, e.g. aircraft dynamics (no aerobatics)

* Linear time-invariant (LTI) system:

r = Axr + Bu
y=Cx+ Du

* Laplace and Fourier transforms of the system transport the analysis to
very useful spaces.



Frequency Domain Analysis

* The frequency response measures the way in which a system responds to
a sinusoidal excitation.

* Offers a very powerful tool for linear system analysis and controller

synthesis.
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Time Domain Analysis

e Simulate the behaviour of the system to a given input signal.

* Even for very complex non-linear models we can simulate the time
response by solving an initial value problem numerically, e.g.

a(t + At) ~ a(t) + At @(t) = x(t) + At f(x(t), u(t))

* There is a trade-off between computation time, accuracy and numerical
stability when solving the initial value problem. This leads to more
advanced integration methods:

— Use of high-order derivatives.
— Adaptive step size.
— Implicit methods.



Observability

* A system is observable if the current state x(t,) can be determined using

the input and output signals of the system during a finite time interval
[£o,t].

* No test for observability for a general nonlinear system. However, the
linear time invariant case is neat and illustrative:
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observability < uniqueness of solution < O has full rank



Controllability/Reachability

* A system is controllable if it is possible to steer it from any state x to any
state z in finite time.

e Again, no general results to test controllability in the nonlinear case but
an illustrative solution for LTI systems:

xr1 = Axo + Buog
To = A(A(EO -+ Bug) + Buy = AziE() + ABug + Buy

Uuo

Ty = Ao+ [ A"'B ... AB B]
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controllability < solution 4 Vx,, < C has full rank



Performance

* Good dynamic properties:

— Adequate damping and oscillation frequencies.
— Low/no steady state error.

— Quick response.

— Low overshoot.

* Good disturbance rejection.

* Low control effort to minimise control energy and actuator wear.



Stability

* Equilibrium point (5 )

0= f(xe,ue) & e is an equilibrium state

* X.is a stable equilibrium point if for all £> 0 there exists a > 0 such that

|Zpert — Te|| < 0 = ||x(t; pert) —xe|]| <€ V>0




Robustness

* Robustness to uncertainty: performance and stability need to be achieved
even when the dynamical system is not exactly the way we thought it
was.

* Parameter uncertainty and unmodelled dynamics.

* Robust stability: a controller provides robust stability if it stabilises all
dynamical systems belonging to a certain set constructed around the
nominal system.

* Robust performance: same idea.



Feedback

* Feedback: usage of a system output to compute its input.

j":f(l‘:u) ’U,:’/’T(y)
y = g(z) = fz,m(y))

* Used in engineering systems but it is ubiquitous in nature.



Feedback

Feedback provides two key benetits:

* Robustness to uncertainty

— High performance can be achieved even when our model of reality is far
from perfect.

— Sensing allows comparison between actual and desired and feedback
provides a correction.
* Modification of the natural dynamics

— Feedback allows the closed-loop system to have the desired dynamics
regardless of the natural dynamics of the original system (within limits).



State Feedback

* Measure the full state and use it to determine the input to the system:

* We have all possible information about the system. However, it may not
be controllable...

* Controller design for linear systems: pole placement, LOR...



Output Feedback

The full state is not measured, we have two main alternatives:

* If we can define our performance objectives as a function of the
measured output.

u=m(y)
r = f(x,m(y))

* In a more general case we can use the measured outputs to estimate the
value of the states and then use state feedback.

u = 7(x)

&= f(z,7(1))



State Estimation

 If the system is observable , an observer solves the state estimation
inference problem

p($k|yknyk—1n Uy Uje—1,y 0 )

* In general, the observer has to deal with noisy measurements.

* Several approaches to design an observer:

— Traditionally the observer is another dynamical system where the error
between estimated and real states tends to zero with time, e.g.
dx

— Currently one can sometimes afford to use particle filters (i.e. Monte Carlo)
to solve nonlinear /non-Gaussian state estimation problems.



Kalman Filter

* Bayes filter for linear systems with Gaussian noise in the measurements
and the dynamics.

* The Kalman filter uses a gain L that minimises the mean square error of
the state prediction given the noise covariance matrices and the system
matrices.

e A graphical model may help.



System Identification

* Learning problem: given a collection of measured inputs and outputs,
make a model of the dynamical system operating behind the scenes.

* Typically uses some form of regression.

* Identification in the time domain and in the frequency domain.



Adaptive Control

* Needs the identification step? AC is reacting to changes, or at least to
more information gathered from the system.

* Dual control: simultaneous identification of the system dynamics and
satisfaction of the controller goals. Exploration-exploitation trade-off.
Several strategies available:

— Certainty equivalence: ignore uncertainty.
— Probing: active learning.

— Cautious: use a conservative loss function.

* Other strategies:

— Gain scheduling.
— Self-tuning regulators.



Optimal Control

* Design of controllers that optimise a criterion.

— Regulator problems.
— End-point problems, e.g. spacecraft rendezvous.



LQR: Linear Quadratic Regulator

A practical optimal control method for linear time-invariant systems.

J = / Qe +u' Quu di
0
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Duality control — state estimation.

LQG: Linear Gaussian Regulator = Kalman filter + LOR

Certainty equivalence.



Relationship to Reinforcement Learning

* RL is a combination of identification, adaptive control and optimal
control.

* Control theory focuses more on actually implementing controllers than
on trying to solve the big RL problem.

* RL uses feedback, not only open loop planning. Doesn't care about
things like stability because it's normally aimed at longer time scale
planning, e.g. traditionally we wouldn't use RL to stabilise an aircraft.



A General Controller Structure
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* The trajectory generation block has two functions:

— Generate the reference state xu.
— Generate a feedforward control signal uy.
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