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Outline

I Time series models.

I Bayesian & nonparametric & nonlinear.

I A zoo of GP-based models.

I Predictions in GP state-space models.

I ...



Time Series Models



Classic Models of Time Series

Auto-regressive model (AR, ARX, NARX...)

y0 y1 y2 y3 ...

yt = f (yt−1, ...,yt−ny ) + δt .

State-space models (SSM)

x0 x1 x2

y0 y1 y2

...f f

g g g

xt+1 = f (xt) + εt ,

yt = g(xt) + ν t .



Bayesian

Model uncertainty.

Controlled overfitting.

No need to artificially limit the complexity of the models. There
is no statistical price to pay for adding more parameters.



Nonparametric

Flexible.

Data is not condensed into a finite set of parameters.



Nonlinear

The world is nonlinear!

Linear dynamical systems are boring.



A Zoo of GP-Based Time Series Models

I Linear-Gaussian Auto-Regressive / State-Space

I Nonlinear Auto-Regressive Model with GP

I State-Space Model with Transition GP

I State-Space Model with Transition and Emission GPs

I GP-LVM with Correlated Latent Variables



0. Linear-Gaussian Auto-Regressive /
State-Space

t0 t1 t2 t3

y0 y1 y2 y3... ...

y(t) ∼ GP
(
m(t), k(t , t ′)

)
.



1. Nonlinear Auto-Regressive Model with GP

y0 y1 y2 y3 y4

f2 f3 f4... ...

f (Y) ∼ GP
(
mf (Y), kf (Y,Y′)

)
,

ft = f (Yt−1),

yt | ft ∼ p(yt | ft ,θ),

where
Yt−1 = {yt−1, ...,yt−ny}.



2. State-Space Model with Transition GP
(GP-SSM)

x0 x1 x2 x3

f1 f2 f3... ...

y0 y1 y2 y3

f (x) ∼ GP
(
mf (x), kf (x,x′)

)
,

x0 ∼ p(x0),

ft = f (xt−1),

xt | ft ∼ N (xt | ft ,Q),

yt | xt ∼ p(yt | xt ,θy ).



2. State-Space Model with Transition GP
(GP-SSM)

4 independent state trajectories from a 2-state GP-SSM with
fixed hyperparameters.
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3. State-Space Model with Transition and Emission
GPs (GP-SSM)

x0 x1 x2 x3

f1 f2 f3... ...

g0 g1 g2 g3... ...

y0 y1 y2 y3

f (x) ∼ GP
(
mf (x), kf (x,x′)

)
,

x0 ∼ p(x0),

ft = f (xt−1),

xt | ft ∼ N (xt | ft ,Q),

g(x) ∼ GP
(
mg(x), kg(x,x′)

)
,

gt = g(xt),

yt | gt ∼ N (yt | gt ,R).



4. GP-LVM with Correlated Latent Variables
t0 t1 t2 t3

x0 x1 x2 x3... ...

g0 g1 g2 g3... ...

y0 y1 y2 y3

x(t) ∼ GP
(
mx(t), kx(t , t ′)

)
,

g(x) ∼ GP
(
mg(x), kg(x,x′)

)
,

xt = x(t),
gt = g(xt),

yt | gt ∼ N
(
yt | gt , β

−1I
)
.


