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What is Control?

* Sensing + Computation + Actuation
* Goals: Performance, Stability, Robustness.

e Demo


http://youtu.be/8By2AEsGAhU?t=40s

Objective

* The control policy needs to run in real time: find a policy that computes control
actions based solely on the current estimate of the state.

* The model of the dynamics is stochastic. Minimise the expected loss over a horizon.



State Space Models (SSMs)

* As opposed to Hidden Markov Models, the states are continuous.
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Control Inputs

We can influence the state transitions.
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Feedback

* The inputis a function of the measurement: output feedback.
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Feedback with State Estimation

* We may have a rough idea about s and use it as a prior: p(s)

* Inference is explicitly represented as part of the model!

bi = p(si|yi) o< p(yi|si) p(si)



State Estimation Using a Model of the Dynamics

* Using a model of the transition dynamics can be VERY useful.




Bayesian State Estimation (Bayesian Filtering)

» Step 1 - Prediction: the current belief is propagated forward using the dynamics model.

» Step 2 - Update: the propagated belief is used as a prior to compute the new belief.




Bayesian State Estimation (Bayesian Filtering)

Step 1 - Prediction: the current belief is propagated forward using the dynamics model.

Step 2 - Update: the propagated belief is used as a prior to compute the new belief.
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bel(siv1) = np(Yir|siv1) bel(sivr)



Kalman Filtering (Linear-Gaussian Model)

* The Kalman filter is the analytical Bayesian Filter solution for Linear-Gaussian
State Space Models.




Particle Filtering

* Sequential Monte Carlo method for arbitrary systems, e.g. nonlinear and
non-Gaussian.
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Sampling from the Generative Model

* We sample N independent chains of states.

* Each of those N chains has its own particle filter with M particles.

N particles @

N*M particles



Sampling Example (1/3)

* A 1D example: control of temperature in a nuclear reactor.

* N=3 particles. Each of those has its own particle filter with M = 100 particles.
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Sampling Example (2/3)

* Feedback using the state estimated by a Particle Filter.

* Control signal is proportional to the mean of the particles in the filter.
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Sampling Example (3/3)

Temperature

Each of the three sampled trajectories has its own particle filter with M=1000
particles.

This is a Linear-Gaussian model: the belief is Gaussian.
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Recap

N*M particles




Future Work

* Do we need to model distributions over belief distributions? (probably not)

* Effect of imperfect knowledge of the dynamics model.

* Is it beneficial to train a policy that uses the variance in the belief (in real time)?
* How well can we deal with partial observability of the state?

* Representation of the state in a latent space.
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