
Bayesian Time Series Learning

with Gaussian Processes

Roger Frigola-Alcalde
Department of Engineering

St Edmund’s College
University of Cambridge

August 2015

This dissertation is submitted for the degree of
Doctor of Philosophy

SUMMARY

The analysis of time series data is important in fields as disparate
as the social sciences, biology, engineering or econometrics. In this
dissertation, we present a number of algorithms designed to learn
Bayesian nonparametric models of time series. The goal of these
kinds of models is twofold. First, they aim at making predictions
which quantify the uncertainty due to limitations in the quantity
and the quality of the data. Second, they are flexible enough to
model highly complex data whilst preventing overfitting when the
data does not warrant complex models.

We begin with a unifying literature review on time series mod-
els based on Gaussian processes. Then, we centre our attention
on the Gaussian Process State-Space Model (GP-SSM): a Bayesian
nonparametric generalisation of discrete-time nonlinear state-space
models. We present a novel formulation of the GP-SSM that offers
new insights into its properties. We then proceed to exploit those
insights by developing new learning algorithms for the GP-SSM
based on particle Markov chain Monte Carlo and variational infer-
ence.

Finally, we present a filtered nonlinear auto-regressive model with
a simple, robust and fast learning algorithm that makes it well suited
to its application by non-experts on large datasets. Its main advan-
tage is that it avoids the computationally expensive (and potentially
difficult to tune) smoothing step that is a key part of learning non-
linear state-space models.

ACKNOWLEDGEMENTS

I would like to thank Carl Rasmussen who took the gamble of ac-
cepting a candidate for a PhD in statistical machine learning who
barely knew what a probability distribution was. I am also grateful
to Zoubin Ghahramani, Rich Turner and Daniel Wolpert for creat-
ing such a wonderful academic environment at the Computational
and Biological Learning Lab in Cambridge; it has been incredible
to interact with so many talented people. I would also like to thank
Thomas Schön for hosting my fruitful academic visit at Linköping
University (Sweden).

I am indebted to my talented collaborators Fredrik Lindsten and
Yutian Chen. Their technical skills have been instrumental to de-
velop ideas that were only fuzzy in my head.

I would also like to thank my thesis examiners, Rich Turner and
James Hensman, and Thang Bui for their helpful feedback that has
certainly improved the thesis. Of course, any remaining inaccura-
cies and errors are entirely my fault!

Finally, I can not thank enough all the colleagues, friends and fam-
ily with whom I have spent so many joyful times throughout my
life.

DECLARATION

This dissertation is the result of my own work and includes noth-
ing which is the outcome of work done in collaboration except as
specified in the text.

This dissertation is not substantially the same as any that I have
submitted, or, is being concurrently submitted for a degree or diplo-
ma or other qualification at the University of Cambridge or any
other University or similar institution. I further state that no sub-
stantial part of my dissertation has already been submitted, or, is
being concurrently submitted for any such degree, diploma or other
qualification at the University of Cambridge or any other Univer-
sity of similar institution.

This dissertation does not exceed 65,000 words, including appen-
dices, bibliography, footnotes, tables and equations. This disserta-
tion does not contain more than 150 figures.

“Would you tell me, please, which way I ought to go from here?”

“That depends a good deal on where you want to get to,” said the
Cat.

“I don’t much care where —” said Alice.

“Then it doesn’t matter which way you go,” said the Cat.

“— so long as I get somewhere,” Alice added as an explanation.

“Oh, you’re sure to do that,” said the Cat, “if you only walk long
enough.”

Lewis Carroll, Alice’s Adventures in Wonderland

Contents

1 Introduction 1
1.1 Time Series Models . 1
1.2 Bayesian Nonparametric Time Series Models 2

1.2.1 Bayesian Methods . 2
1.2.2 Bayesian Methods in System Identification 4
1.2.3 Nonparametric Models 4

1.3 Contributions . 5

2 Time Series Modelling with Gaussian Processes 7
2.1 Introduction . 7
2.2 Gaussian Processes . 8

2.2.1 Gaussian Processes for Regression 9
2.2.2 Graphical Models of Gaussian Processes 11

2.3 A Zoo of GP-Based Dynamical System Models 12
2.3.1 Linear-Gaussian Time Series Model 13
2.3.2 Nonlinear Auto-Regressive Model with GP 14
2.3.3 State-Space Model with Transition GP 16
2.3.4 State-Space Model with Emission GP 18
2.3.5 State-Space Model with Transition and Emission GPs . . 19
2.3.6 Non-Markovian-State Model with Transition GP 21
2.3.7 GP-LVM with GP on the Latent Variables 22

2.4 Why Gaussian Process State-Space Models? 23

3 Gaussian Process State-Space Models – Description 25
3.1 GP-SSM with State Transition GP 25

3.1.1 An Important Remark . 28
3.1.2 Marginalisation of f1:T . 29
3.1.3 Marginalisation of f(x) 30

3.2 GP-SSM with Transition and Emission GPs 31
3.2.1 Equivalence between GP-SSMs 32

3.3 Sparse GP-SSMs . 33
3.4 Summary of GP-SSM Densities 34

4 Gaussian Process State-Space Models – Monte Carlo Learning 37
4.1 Introduction . 37
4.2 Fully Bayesian Learning . 38

4.2.1 Sampling State Trajectories with PMCMC 38
4.2.2 Sampling the Hyper-Parameters 40
4.2.3 Making Predictions . 41

ix

x CONTENTS

4.2.4 Experiments . 41
4.3 Empirical Bayes . 44

4.3.1 Particle Stochastic Approximation EM 45
4.3.2 Making Predictions . 47
4.3.3 Experiments . 48

4.4 Reducing the Computational Complexity 51
4.4.1 FIC Covariance Function 51
4.4.2 Sequential Construction of Cholesky Factorisations . . . 52

4.5 Conclusions . 53

5 Gaussian Process State-Space Models – Variational Learning 55
5.1 Introduction . 55
5.2 Evidence Lower Bound of a GP-SSM 56

5.2.1 Interpretation of the Lower Bound 58
5.2.2 Properties of the Lower Bound 59
5.2.3 Are the Inducing Inputs Variational Parameters? 60

5.3 Optimal Variational Distributions 60
5.3.1 Optimal Variational Distribution for u 60
5.3.2 Optimal Variational Distribution for x 61

5.4 Optimising the Evidence Lower Bound 63
5.4.1 Alternative Optimisation Strategy 63

5.5 Making Predictions . 64
5.6 Extensions . 65

5.6.1 Stochastic Variational Inference 65
5.6.2 Online Learning . 66

5.7 Additional Topics . 67
5.7.1 Relationship to Regularised Recurrent Neural Networks 67
5.7.2 Variational Learning in Related Models 68
5.7.3 Arbitrary Mean Function Case 71

5.8 Experiments . 72
5.8.1 1D Nonlinear System . 72
5.8.2 Neural Spike Train Recordings 72

6 Filtered Auto-Regressive Gaussian Process Models 75
6.1 Introduction . 75

6.1.1 End-to-End Machine Learning 76
6.1.2 Algorithmic Weakening 76

6.2 The GP-FNARX Model . 77
6.2.1 Choice of Preprocessing and Covariance Functions . . . 78

6.3 Optimisation of the Marginal Likelihood 79
6.4 Sparse GPs for Computational Speed 80
6.5 Algorithm . 80
6.6 Experiments . 81

7 Conclusions 85
7.1 Contributions . 85
7.2 Future work . 86

CONTENTS xi

A Approximate Bayesian Inference 87
A.1 Particle Markov Chain Monte Carlo 87

A.1.1 Particle Gibbs with Ancestor Sampling 87
A.2 Variational Bayes . 89

xii CONTENTS

Chapter 1

Introduction

”The purpose of computing is insight, not numbers.”

Richard W. Hamming

”The purpose of computing is numbers — specifically, correct numbers.”

Leslie F. Greengard

1.1 TIME SERIES MODELS

Time series data consists of a number of measurements taken over time. For
example, a time series dataset could be created by recording power generated
by a solar panel, by storing measurements made by sensors on an aircraft, or by
monitoring the vital signs of a patient in a hospital. The ubiquity of time series
data makes its analysis important for fields as disparate as the social sciences,
biology, engineering or econometrics.

Time series tend to exhibit high correlations induced by the temporal struc-
ture in the data. It is therefore not surprising that specialised methods for time
series analysis have been developed over time. In this thesis we will focus
on a model-based approach to time series analysis. Models are mathematical
constructions that often correspond to an idealised view about how the data
is generated. Models are useful to make predictions about the future and to
better understand what was happening while the data was being recorded.

The process of tuning models of time series using data is called system iden-
tification in the field of control theory (Ljung, 1999). In the fields of statistics
and machine learning it is often referred to as estimation, fitting, inference or
learning of time series (Hamilton, 1994; Shumway and Stoffer, 2011; Barber
et al., 2011; Tsay, 2013). Creating faithful models given the data at our disposal
is of great practical importance. Otherwise any reasoning, prediction or design
based on the data could be fatally flawed.

Models are usually not perfect and the data available to us is often limited
in quantity and quality. It is therefore normal to ask ourselves: are we limited

1

2 1. INTRODUCTION

to creating just one model or could we make a collection of models that were
all plausible given the available data? If we embrace uncertainty, we can move
from the notion of having a single model to that of keeping a potentially infinite
collection of models and combining them to make decisions of any sort. This
is one of the fundamental ideas behind Bayesian inference.

In this thesis, we develop methods for Bayesian inference applied to dy-
namical systems using models based on Gaussian processes. Although we will
work with very general models that can be applied in a variety of situations, our
mindset is that of the field of system identification. In other words, we focus
on learning models typically found in engineering problems where a relatively
limited amount of noisy sensors give a glimpse at the complex dynamics of a
system.

1.2 BAYESIAN NONPARAMETRIC TIME SERIES MOD-

ELS

1.2.1 BAYESIAN METHODS

When learning a model from a time series, we never have the luxury of an
infinite amount of noiseless data and unlimited computational power. In prac-
tice, we deal with finite noisy datasets which lead to uncertainty about what
the most appropriate model is given the available data. In Bayesian inference,
probabilities are treated as a way to represent the subjective uncertainty of the
rational agent performing inference (Jaynes, 2003). This uncertainty is repre-
sented as a probability distribution over the model given the data

p(M | D), (1.1)

where the model is understood here in the sense of the functional form and
the value of any parameter that the model might have. This contrasts with the
most common approaches to time series analysis where a single model of the
system is found, usually by optimising a cost function such as the likelihood
(Ljung, 1999; Shumway and Stoffer, 2011). After optimisation, the resulting
model is considered the best available representation of the system and used
for any further application.

In a Bayesian approach, however, it is acknowledged that several models
(or values of a parameter) can be consistent with the data (Peterka, 1981). In
the case of a parametric model, rather than obtaining a single estimate of the
“best” value of the parameters θ∗, Bayesian inference will produce a posterior
probability distribution over this parameter p(θ|D). This distribution allows
for the fact that several values of the parameter might also be plausible given
the observed data D. The posterior p(θ|D) can then interpreted as our degree
of belief about the value of the parameter θ. Predictions or decisions based on
the posterior are made by computing expectations over the posterior. Infor-
mally, one can think of predictions as being an average using different values

1.2. BAYESIAN NONPARAMETRIC TIME SERIES MODELS 3

of the parameters weighted by how much the parameter is consistent with the
data. Predictions can be made with error bars that represent both the system’s
inherent stochasticity and our own degree of ignorance about what the correct
model is.

For the sake of example, let’s consider a parametric model of a discrete-time
stochastic dynamical system with a continuous state defined by xt. The state
transition density is

p(xt+1|xt, θ). (1.2)

Bayesian learning provides a posterior over the unknown parameter θ given
the data p(θ|D). To make predictions about the state transition we can integrate
over the posterior in order to average over all plausible values of the parameter
after having seen the data

p(xt+1|xt,D) =

∫
p(xt+1|xt, θ) p(θ|D) dθ. (1.3)

Here, predictions are made by considering all plausible values of θ, not only a
“best guess”.

Bayesian inference needs a prior: p(θ) for our example above. The prior is
a probability distribution representing our uncertainty about the object to be
inferred before seeing the data. This requirement of a subjective distribution
is often criticised. However, the prior is an opportunity to formalise many
of the assumptions that in other methods may be less explicit. MacKay (2003)
points out that “you cannot do inference without making assumptions”. In Bayesian
inference those assumptions are very clearly specified.

In the context of learning dynamical systems, Isermann and Münchhof (2011)
derive maximum likelihood and least squares methods from Bayesian infer-
ence. Although maximum likelihood and Bayesian inference are related in
their use of probability, there is a fundamental philosophical difference. Spiegel-
halter and Rice (2009) summarise it eloquently:

At a simple level, ‘classical’ likelihood-based inference closely resembles
Bayesian inference using a flat prior, making the posterior and likelihood
proportional. However, this underestimates the deep philosophical differ-
ences between Bayesian and frequentist inference; Bayesian [sic] make
statements about the relative evidence for parameter values given a dataset,
while frequentists compare the relative chance of datasets given a parame-
ter value.

Bayesian methods are also relevant in “big data” settings when the com-
plexity of the system that generated the data is large relative to the amount of
data. Large datasets can contain many nuances of the behaviour of a complex
system. Models of large capacity are then required if those nuances are to be
captured properly. Moreover, there will still be uncertainty about the system
that generated the data. For example, even if a season’s worth of time series
data recorded from a Formula 1 car is in the order of a petabyte, there will be,
hopefully, very little data of the car sliding sideways out of control. Therefore,

4 1. INTRODUCTION

models about the behaviour of the car at extremely large slip angles would be
highly uncertain.

1.2.2 BAYESIAN METHODS IN SYSTEM IDENTIFICATION

Despite Peterka (1981) having set the basis for Bayesian system identification,
Bayesian system identification has not had a significant impact within the con-
trol community. For instance, consider this quote from a recent book by well
known authors in the field (Isermann and Münchhof, 2011):

Bayes estimation has little relevance for practical applications in the area of
system identification. [...] Bayes estimation is mainly of theoretical value.
It can be regarded as the most general and most comprehensive estimation
method. Other fundamental estimation methods can be derived from this
starting point by making certain assumptions or specializations.

It is apparent that the authors recognise Bayesian inference as a sound frame-
work for estimation but later dismiss it on the grounds of its mathematical and
computational burden and its need for prior information.

However, since Peterka’s article in 1981, there have been radical improve-
ments in both computational power and algorithms for Bayesian learning. Some
influential recent developments such as the regularised kernel methods of Chen
et al. (2012) can be interpreted from a Bayesian perspective. Their use of a prior
for regularised learning has shown great promise and moving from this to the
creation of a posterior over dynamical systems is straightforward.

1.2.3 NONPARAMETRIC MODELS

In Equation (1.3) we have made use of the fact that

p(xt+1|xt, θ,D) = p(xt+1|xt, θ), (1.4)

which is true for parametric models: predictions are conditionally indepen-
dent of the observed data D given the parameters. In other words, the data
is distilled into the parameter θ and any subsequent prediction does not make
use of the original dataset. This is very convenient but it is not without its
drawbacks. Choosing a model from a particular parametric class constrains its
flexibility. An alternative is to use nonparametric models. In those models, the
data is not reduced to a finite set of parameters. In fact, nonparametric models
can be shown to have an infinite-dimensional parameter space (Orbanz, 2014).
This allows the model to represent more complexity as the size of the dataset
D grows; defying in this way the bound in model complexity existing in para-
metric models.

Models can be thought of as an information channel from past data to future
predictions (Ghahramani, 2012). In this context, a parametric model constitutes
a bottleneck in the information channel: predictions are made based only on
the learnt parameters. However, nonparametric models are memory-based since

1.3. CONTRIBUTIONS 5

they need to “remember” the full dataset in order to make predictions. This
can be interpreted as nonparametric models having a number of parameters
that progressively grows with the size of the dataset.

Bayesian nonparametric models combine the two aspects presented up to
this point: they allow Bayesian inference to be performed on objects of infinite
dimensionality. Next chapter introduces how Gaussian processes (Rasmussen
and Williams, 2006) can be used to infer a function given data. The result of in-
ference will not be a single function but a posterior distribution over functions.

1.3 CONTRIBUTIONS

The main contributions in this dissertation have been published before in

• Roger Frigola and Carl E. Rasmussen, (2013). Integrated preprocessing
for Bayesian nonlinear system identification with Gaussian processes. In
IEEE 52nd Annual Conference on Decision and Control (CDC), pp. 5371-5376.

• Roger Frigola, Fredrik Lindsten, Thomas B. Schön, and Carl E. Rasmussen.
(2013). Bayesian inference and learning in Gaussian process state-space
models with particle MCMC. In Advances in Neural Information Processing
Systems 26 (NIPS), pp. 3156-3164.

• Roger Frigola, Fredrik Lindsten, Thomas B. Schön, and Carl E. Rasmussen.
(2014). Identification of Gaussian process state-space models with parti-
cle stochastic approximation EM. In 19th World Congress of the Interna-
tional Federation of Automatic Control (IFAC), pp. 4097-4102.

• Roger Frigola, Yutian Chen, and Carl E. Rasmussen. (2014). Variational
Gaussian process state-space models. In Advances in Neural Information
Processing Systems 27 (NIPS), pp. 3680-3688.

However, I take the opportunity that the thesis format offers to build on the
publications and extend the presentation of the material. In particular, the lack
of asphyxiating page count constraints will allow for the presentation of subtle
details of Gaussian Process State-Space Models that could not fit in the papers.
Also, there is now space for a comprehensive review highlighting prior work
using Gaussian processes for time series modelling. Models that were origi-
nally presented in different contexts and with differing notations are now put
under the same light for ease of comparison. Hopefully, this review will be
useful to researchers entering the field of time series modelling with Gaussian
processes.

A summary of technical contributions of this thesis can be found in Sec-
tion 7.1.

6 1. INTRODUCTION

Chapter 2

Time Series Modelling with
Gaussian Processes

This chapter aims at providing a self-contained review of previous work on
time series modelling with Gaussian processes. A particular effort has been
made to present models with a unified notation and separate the models them-
selves from the algorithms used to learn them.

2.1 INTRODUCTION

Learning dynamical systems, also known as system identification or time series
modelling, aims at the creation of a model based on measured signals. This
model can be used, amongst other things, to predict future behaviour of the
system, to explain interesting structure in the data or to denoise the original
time series.

Systems displaying temporal dynamics are ubiquitous in nature, engineer-
ing and the social sciences. For instance, we could obtain data about how the
number of individuals of several species in an ecosystem changes with time;
we could record data from sensors in an aircraft; or we could log the evolution
of share price in a stock market. In all those cases, learning from time series
can provide both insight and the ability to make predictions.

We consider that there will potentially be two kinds of measured signals.
In the system identification jargon those signals are named inputs and out-
puts. Inputs are external influences to the system (e.g. rain in an ecosystem
or turbulence affecting an aircraft) and outputs are signals that depend on the
current properties of the system (e.g. the number of lions in a savannah or the
speed of an aircraft). We will denote the input vector at time t by ut ∈ Rnu and
the output vector by yt ∈ Rny .

In this review we are mainly concerned with two important families of dy-
namical system models (Ljung, 1999). First, auto-regressive (AR) models di-
rectly model the next output of a system as a function of a number of previous

7

8 2. TIME SERIES MODELLING WITH GAUSSIAN PROCESSES

y0 y1 y2 y3 ...

Figure 2.1: Second order (τy = 2) auto-regressive model.

x0 x1 x2

y0 y1 y2

...
f

g

Figure 2.2: State-space model. Shaded nodes are observed and unshaded nodes are latent (hid-
den).

inputs and outputs

yt = f(yt−1, ...,yt−τy ,ut−1, ...,ut−τu) + δt, (2.1)

where δt represents random noise that is independent and identically dis-
tributed across time.

The second class of dynamical system models, named state-space models
(SSM), introduces latent (unobserved) variables called states xt ∈ Rnx . The
state at a given time summarises all the history of the system and is enough to
make predictions about its future. A state-space model is mainly defined by
the state transition function f and the measurement function g

xt+1 = f(xt,ut) + vt, (2.2a)

yt = g(xt,ut) + et, (2.2b)

where vt and et are additive noises known as the process noise and measure-
ment noise, respectively.

From this point on, in the interest of notational simplicity, we will avoid
explicitly conditioning on observed inputs. When available, inputs can always
be added as arguments to the various functions that are being learnt. Figure
2.1 represents the graphical model of an auto-regressive model and Figure 2.2
is the graphical model of a state-space model.

2.2 GAUSSIAN PROCESSES

Gaussian processes (GPs) are a class of stochastic processes that have proved
very successful to perform inference directly over the space of functions (Ras-
mussen and Williams, 2006). This contrasts with models of functions defined

2.2. GAUSSIAN PROCESSES 9

by a parameterised class of functions and a prior over the parameters. In the
context of modelling dynamical systems, Gaussian processes can be used as
priors over the functions representing the system dynamics or the mapping
from latent states to measurements.

In the following, we provide a brief exposition of Gaussian processes and
their application to statistical regression problems. We refer the reader to (Ras-
mussen and Williams, 2006) for a detailed description. A Gaussian process can
be defined as a collection of random variables, any finite number of which have
a joint Gaussian distribution

p(fi, fj , fk, ...) = N

m(xi)

m(xj)

m(xk)
...

 ,

k(xi,xi) k(xi,xj) k(xi,xk)

k(xj ,xi) k(xj ,xj) k(xj ,xk)

k(xk,xi) k(xk,xj) k(xk,xk)

. . .

 .

(2.3)
The value of a function at a particular input location f(xi) is denoted by the
random variable fi. To denote that a function follows a Gaussian process, we
write

f(x) ∼ GP (m(x), k(x,x′)) , (2.4)

where m(x) and k(x,x′) are the mean and covariance functions respectively.
Those two functions fully specify the Gaussian process.

2.2.1 GAUSSIAN PROCESSES FOR REGRESSION

The regression problem is perhaps the simplest in which one can appreciate
the usefulness of Gaussian processes for machine learning. The task consists
in learning from a dataset with input-output data pairs {xi,yi}Ni=1 where the
outputs are real-valued. After learning, it is possible to predict the value of the
output y∗ at any new test input x∗. Regression consists, therefore, in learning
the function mapping inputs to outputs: y∗ = f(x∗). In the following, we
consider how to perform Bayesian inference in the space of functions with the
help of Gaussian processes.

When doing Bayesian inference on a parametric model we put a prior on
the parameter of interest p(θ) and obtain a posterior distribution over the pa-
rameter given the data by combining the prior with the likelihood function
p(y|θ):

p(θ|y) =
p(y|θ) p(θ)

p(y)
, (2.5)

where p(y) is called the evidence or the marginal likelihood and depends on the
prior and the likelihood

p(y) =

∫
p(y, θ) dθ =

∫
p(y|θ) p(θ) dθ. (2.6)

In regression, the ultimate goal is to infer the function mapping inputs to
outputs. A parametric approach to Bayesian regression consists in specifying

10 2. TIME SERIES MODELLING WITH GAUSSIAN PROCESSES

a family of functions parameterised by a finite set of parameters, putting a
prior on those parameters and performing inference. However, we can find
a less restrictive and very powerful approach to inference on functions by di-
rectly specifying a prior over an infinite-dimensional space of functions. This
contrasts with putting a prior over a finite set of parameters which implicitly
specify a distribution over functions.

A very useful prior over functions is the Gaussian process. In a Gaussian
process, once we have selected a finite collection of points x , {x1, ...,xN}
at which to evaluate a function, the prior distribution over the values of the
function at those locations, f ,

(
f(x1), ..., f(xN)

)
, is a Gaussian distribution

p(f |x) = N (m(x),K(x)), (2.7)

where m(x) and K(x) are the mean vector and covariance matrix defined in the
same way as in Equation (2.3). This is due to the marginal of a Gaussian process
being a Gaussian distribution. Therefore, when we only deal with the Gaussian
process at a finite set of inputs, computations involving the prior are based
on Gaussian distributions. Bayes’ theorem can be applied in the conventional
manner to obtain a posterior over the latent function at all locations x where
observations y , {y1, ...,yN} are available

p(f |y,x) =
p(y|f) p(f |x)

p(y|x)
=
p(y|f) N (f |m(x),K(x))

p(y|x)
. (2.8)

And since the denominator is a constant for any given dataset1, we note the
proportionality

p(f |y,x) ∝ p(y|f) N (f |m(x),K(x)). (2.9)

In the particular case where the likelihood has the form p(y|f) = N (y|f ,Σn),
this posterior can be computed analytically and is Gaussian

p(f |y,x) = N (f |K(x)
(
K(x) + Σn

)−1(
y −m(x)

)
,

K(x)−K(x)
(
K(x) + Σn

)−1
K(x)). (2.10)

This is the case in Gaussian process regression when additive Gaussian noise is
considered. However, for arbitrary likelihood functions the posterior will not
necessarily be Gaussian.

The distribution p(f |y,x) represents the posterior over the latent function
f(x) at all locations in the set x. This can be useful in itself, but we may also
be interested in the value of f(x) at other locations in the input space. In other
words, we may be interested in the predictive distribution of f∗ = f(x∗) at a
new location x∗

p(f∗|x∗,y,x). (2.11)

1Note that we are currently considering mean and covariance functions that do not have hyper-
parameters to be tuned.

2.2. GAUSSIAN PROCESSES 11

This can be achieved by marginalising f

p(f∗|x∗,y,x) =

∫
p(f∗, f |x∗,y,x) df =

∫
p(f∗|x∗, f ,x) p(f |y,x) df , (2.12)

where the first term in the second integral is always a Gaussian that results
from the Gaussian process prior linking all possible values of f and f∗ with a
joint normal distribution (Rasmussen and Williams, 2006). The second term,
p(f |y,x), is simply the posterior of f from Equation (2.8). When the likeli-
hood is p(y|f) = N (y|f ,Σn), both the posterior and predictive distributions
are Gaussian. For other likelihoods one may need to resort to approximation
methods (e.g. (Murray et al., 2010; Nguyen and Bonilla, 2014)).

For Gaussian likelihoods it is also straightforward to marginalise the un-
known values of the function and obtain a tractable marginal likelihood of the
model

p(y|x) = N (y|m(x),K(x) + Σn). (2.13)

Maximising the marginal likelihood with respect to the mean and covariance
functions provides a practical way to perform Bayesian model selection (MacKay,
2003; Rasmussen and Williams, 2006).

2.2.2 GRAPHICAL MODELS OF GAUSSIAN PROCESSES

A possible way to represent Gaussian processes in a graphical model consists
in drawing a thick solid bar between the jointly normally-distributed variables
(Rasmussen and Williams, 2006). All the variables that touch the solid bar be-
long to the same Gaussian process and are fully interconnected, i.e. in principle
no conditional independence statements between those variables can be made
until one examines the covariance function. There are an infinite amount of
variables in the Gaussian process but we only draw a finite set. Periods of
ellipsis can be drawn at the extremities of the solid bar to reinforce this idea.

Figure 2.3 depicts the model for Gaussian process regression with a dataset
consisting of three inputs and three outputs and where predictions are to be
made at a given test point x∗.

x0 x1 x2 x∗

f0 f1 f2 f∗

y0 y1 y2 y∗

... ...

Figure 2.3: Graphical model of Gaussian process regression.

A way to interpret this notation consists in considering a function f(·) that
is distributed according to a GP. All variables f are conditionally independent
of each other given that function (Figure 2.4).

12 2. TIME SERIES MODELLING WITH GAUSSIAN PROCESSES

x0 x1 x2 x∗

f0 f1 f2 f∗

y0 y1 y2 y∗

f(·)

Figure 2.4: Graphical model of Gaussian process regression explicitly representing the latent
function f(·).

It is important to note that models involving the thick bar should not be in-
terpreted as a conventional undirected probabilistic graphical model. The thick
bar notation shows in a simple manner which variables belong to the same GP.
For general covariance functions, drawing Figure 2.3 with the semantics of con-
ventional directed graphical models would result in a large number of edges.
See Figure 2.5 for an example.

x0 x1 x2 x∗

f0 f1 f2 f∗

y0 y1 y2 y∗

Figure 2.5: Graphical model of Gaussian process regression using only directed edges.

2.3 A ZOO OF GP-BASED DYNAMICAL

SYSTEM MODELS

In this section we present a unified description of several models of dynamical
systems based on Gaussian process that have appeared in the literature. In
particular, we provide generative models to easily identify the assumptions
made by each model and review the different inference/learning algorithms
that have been tailored to each model.

The models based on Gaussian processes presented in this section are in
fact generalisations of parametric models with similar structures. For instance,
if the covariance functions in the GPs of the model shown in Section 2.3.5 are
selected to be linear, the model becomes equivalent to the usual linear (para-
metric) state-space model.

Furthermore, the equivalence theorem presented in Section 3.2.1 implies
that several GP-based state-space models that have originally been presented
as different in the literature are in fact equivalent. Those equivalences will be
highlighted in the description of each model.

2.3. A ZOO OF GP-BASED DYNAMICAL SYSTEM MODELS 13

2.3.1 LINEAR-GAUSSIAN TIME SERIES MODEL

Graphical model:

t0 t1 t2 t3

y0 y1 y2 y3... ...

Generative model:

y(t) ∼ GP
(
m(t), k(t, t′)

)
. (2.14)

Description: Many popular linear-Gaussian time series models can be in-
terpreted as Gaussian processes with a particular covariance function and time
as the index set of the GP. This includes linear auto-regressive models, lin-
ear auto-regressive moving-average models, linear state-space models2, etc. A
characteristic of these models is that all observations y1:T are jointly Gaussian.
Linear-Gaussian time series models have been studied in the classical time se-
ries literature (Box et al., 1994), stochastic processes literature (Grimmett and
Stirzaker, 2001) and also from a Gaussian process perspective (Turner, 2011;
Roberts et al., 2012).

Inference and Learning: There is a rich literature about learning models of
various flavours of linear auto-regressive models. Both maximum likelihood
and Bayesian learning approaches have been described (Box et al., 1994; Ljung,
1999).

Inference in linear-Gaussian state-space models can be performed efficiently
with the Kalman filter/smoother. Their use leads toO(T) exact inference rather
than the naiveO(T 3). Learning in linear-Gaussian state-space models has been
tackled with approaches such as maximum likelihood (Shumway and Stoffer,
1982; Ljung, 1999), subspace methods (a type of spectral learning) (Overschee
and Moor, 1996), and variational Bayes (Barber and Chiappa, 2006).

A different approach is to treat the problem as Gaussian process regres-
sion with common covariance functions such as the squared exponential which
specifies correlations that decay with time difference or periodic covariance
functions that impose a period to the signal. See, for instance, (Roberts et al.,
2012) for a recent overview of this approach and (Duvenaud et al., 2013) for
an algorithm to perform search in the space of GP kernels. It is important to
note, however, that GP regression from time to observations has an important
drawback: it is not able to learn nonlinear dynamics. For example, consider a
nonlinear aerobatic aeroplane. A model such as the one in this section can be
useful to filter or interpolate data from a given test flight. However, it will not
be able to learn a model of the aeroplane nonlinear dynamics suitable to create
a flight simulator.

2Sometimes known as Kalman filters although this name can lead to confusion between the
model and the algorithm that is used to perform efficient exact inference on it.

14 2. TIME SERIES MODELLING WITH GAUSSIAN PROCESSES

2.3.2 NONLINEAR AUTO-REGRESSIVE MODEL WITH GP

Graphical model:

y0 y1 y2 y3 y4

f2 f3 f4... ...

Second order model, i.e. Yt−1 = {yt−1,yt−2}.

Generative model:

f(Y) ∼ GP
(
mf (Y), kf (Y,Y′)

)
, (2.15a)

Yτy−1 ∼ p(Yτy−1), (2.15b)

ft = f(Yt−1), (2.15c)

yt | ft ∼ p(yt | ft,θ), (2.15d)

where
Yt−1 = {yt−1, ...,yt−τy}. (2.15e)

Description: Auto-regressive models describe a time series by defining
a mapping from past observations to the current observation. In the case of
additive noise this is equivalent to

yt = f(yt−1, ...,yt−τy) + δt.

Conceptually, in other to generate data from this model, one would initially
draw a function from Equation (2.15a) and draw the first τy observations (Eq.
(2.15b)). Then,the rest of the variables could be drawn sequentially. In practice,
however, it is not generally possible to sample a whole function from the GP
since it is an infinite dimensional object. Confer to section 3.1 for a discussion
on how to draw samples in practice in a related model.

An important characteristic of this model is that there is no measurement
noise such as that in a state-space model. Here, noise injected via δt has an
influence on the future trajectory of the system.

Nonlinear auto-regressive models with external (exogenous) inputs are of-
ten known as NARX models.

Inference and Learning: Learning in this model is performed using con-
ventional GP regression techniques. Given a Gaussian process prior on the
latent function, all flavours of Gaussian process regression can be applied to
this model. In particular, exact inference is possible if we choose a conjugate
likelihood, e.g. p(yt | ft,θ) = N (yt | ft,R).

Gregorcic and Lightbody (2002) and Kocijan et al. (2003) presented learn-
ing of a GP-based NARX model via maximisation of the marginal likelihood.
Girard et al. (2003) proposed a method to propagate the predictive uncertainty

2.3. A ZOO OF GP-BASED DYNAMICAL SYSTEM MODELS 15

in GP-based NARX models for multiple-step ahead forecasting. More recently,
Gutjahr et al. (2012) have proposed the use of sparse Gaussian processes in
order to reduce computational complexity and to scale to time series with mil-
lions of data points.

16 2. TIME SERIES MODELLING WITH GAUSSIAN PROCESSES

2.3.3 STATE-SPACE MODEL WITH TRANSITION GP

Graphical model:

x0 x1 x2 x3

f1 f2 f3... ...

y0 y1 y2 y3

Generative model:

f(x) ∼ GP
(
mf (x), kf (x,x′)

)
, (2.16a)

x0 ∼ p(x0), (2.16b)

ft = f(xt−1), (2.16c)

xt | ft ∼ N (ft,Q), (2.16d)

yt | xt ∼ p(yt | xt,θy). (2.16e)

Description: This model corresponds to a nonlinear state-space model
where a Gaussian process prior has been placed over the state transition func-
tion f(xt). This model can be seen as a generalisation of the parametric state-
space model described by

xt+1 | xt ∼ N (f̃(xt,θx),Q), (2.17a)

yt | xt ∼ p(yt | xt,θy). (2.17b)

The Gaussian process prior over f(xt), equation (2.16a), can model systematic
departures from the nonlinear parametric transition function f̃(xt,θx), equa-
tion (2.17a). In practice, one can encode in mf (xt) prior knowledge about the
transition dynamics. For example, in the case of modelling a physical system,
mf (xt) can be based on equations of the underlying physics. But those equa-
tions need not perfectly describe the system. Dynamics not modelled inmf (xt)

can be captured in the posterior over f(xt).
Following the theorem in Section 3.2.1, this model is equivalent to the mod-

els in Sections 2.3.4 and 2.3.5. However, in general, converting the models in
Sections 2.3.4 and 2.3.5 to a “transition-only GP-SSM” form requires an increase
in the dimensionality of the state-space from dim(xt) to dim(xt) + dim(yt).

Inference and Learning: Frigola et al. (2013) derived a factorised formu-
lation of the (non-Gaussian) prior over state trajectories p(x0:T) in the form of
a product of Gaussians. This formulation made possible the use of a Parti-
cle Markov Chain Monte Carlo (PMCMC) approach especially suited to non-
Markovian models. In this approach, the joint smoothing posterior p(x0:T |y0:T)

is sampled directly without the need to know f(x) which has been marginalised.

2.3. A ZOO OF GP-BASED DYNAMICAL SYSTEM MODELS 17

Note that this is markedly different to the conventional approach in parametric
models where the smoothing distribution is obtained conditioned on a model
of the dynamics. A related approach seeking a maximum (marginal) likelihood
estimate of the hyper-parameters via Stochastic Approximation EM was pre-
sented in (Frigola et al., 2014b). Finding point estimates of the hyper-parameters
can be particularly useful when it is not obvious how to specify a prior over
those parameters, e.g. for the inducing input locations in sparse GPs. Chap-
ter 4 provides an expanded exposition of those learning methods based on
PMCMC.

McHutchon and Rasmussen (2014) and McHutchon (2014) used a paramet-
ric model for the state transition function inspired by the form of a GP regres-
sion posterior akin to that presented in (Turner et al., 2010). They compared
several inference and learning schemes based on analytic approximations and
sampling. Learning was performed by finding maximum likelihood estimates
of the parameters of the state transition function and the hyper-parameters.

Wu et al. (2014) used a state-space model with transition GP to model volatil-
ities in a financial time-series setting. They presented an online inference and
learning algorithm based on particle filtering.

18 2. TIME SERIES MODELLING WITH GAUSSIAN PROCESSES

2.3.4 STATE-SPACE MODEL WITH EMISSION GP

Graphical model:

x0 x1 x2 x3

g0 g1 g2 g3... ...

y0 y1 y2 y3

Generative model:

g(x) ∼ GP
(
mg(x), kg(x,x

′)
)
, (2.18a)

x0 ∼ p(x0), (2.18b)

xt+1 | xt ∼ p(xt+1 | xt,θx), (2.18c)

gt = g(xt), (2.18d)

yt | gt ∼ p(yt | gt,θy). (2.18e)

Description: As opposed to the state-space model with transition GP, in
this model the state transition has a parametric form whereas a GP prior is
placed over the emission function g(x).

If p(yt | gt,θy) = N (yt | gt,R) it is possible to analytically marginalise g(x)

to obtain a Gaussian likelihood p(y0:T | x0:T) with a potentially non-diagonal
covariance matrix.

Following the theorem in Section 3.2.1, this model is equivalent to the tran-
sition GP model (Section 2.3.3). Moreover, if the parametric state transition in
this model is linear-Gaussian, it can be considered a special case of the GP-LVM
with GP on the latent variables (Section 2.3.7).

Inference and Learning: Ferris et al. (2007) introduced this model as a GP-
LVM with a Markovian parametric density on the latent variables. The model
was learnt by finding maximum a posteriori (MAP) estimates of the states.

2.3. A ZOO OF GP-BASED DYNAMICAL SYSTEM MODELS 19

2.3.5 STATE-SPACE MODEL WITH TRANSITION AND EMISSION

GPS

Graphical model:

x0 x1 x2 x3

f1 f2 f3... ...

g0 g1 g2 g3... ...

y0 y1 y2 y3

Generative model:

f(x) ∼ GP
(
mf (x), kf (x,x′)

)
, (2.19a)

g(x) ∼ GP
(
mg(x), kg(x,x

′)
)
, (2.19b)

x0 ∼ p(x0), (2.19c)

ft = f(xt−1), (2.19d)

xt | ft ∼ N (ft,Q), (2.19e)

gt = g(xt), (2.19f)

yt | gt ∼ N (gt,R). (2.19g)

Description: This model results from a combination of the models in Sec-
tions 2.3.3 and 2.3.4. However, perhaps surprisingly, the theorem presented in
Section 3.2.1 shows that this model is equivalent to the transition GP model
(Section 2.3.3). Therefore, inference methods designed for the transition GP
model can be used here after a straightforward redefinition of the state vari-
able.

Placing GP priors over both the state transition and the emission functions
opens the door to non-identifiability issues. Those can be mitigated to some
extent by a judicious choice of the parametrisation of the mean and covariance
functions (or by placing priors over those hyper-parameters). However, if the
latent states do not correspond to any interpretable quantity and the only goal
is prediction, the non-identifiability is a problem of lesser importance.

Wang et al. (2006, 2008) presented this model in terms of the weight-space
view of Gaussian processes (Rasmussen and Williams, 2006) where an infi-
nite number of weights are marginalised. The expression for p(y0:T |x0:T) is
straightforward since it corresponds to the Gaussian distribution describing
the marginal likelihood of the GP regression model. However, p(x0:T) is, in
their own words, “more subtle” since a regression approach would lead to
“the nonsensical expression p(x2, ...,xN |x1, ...,xN−1)”. After marginalisation,

20 2. TIME SERIES MODELLING WITH GAUSSIAN PROCESSES

Wang et al. obtain an analytic expression for the non-Gaussian p(x0:T). In
Chapter 3 of this dissertation, we provide an alternative derivation of p(x0:T)

which leads to a number of insights on the model that we use to derive new
learning algorithms.

Inference and Learning: Wang et al. (2006) obtained a MAP estimate of
the latent state trajectory. Later, in (Wang et al., 2008), they report that MAP
learning is prone to overfitting for high-dimensional states and suggest two
solutions: 1) a non-probabilistic regularisation of the latent variables, and 2)
maximising the marginal likelihood with Monte Carlo Expectation Maximi-
sation where the joint smoothing distribution is sampled using Hamiltonian
Monte Carlo.

Ko and Fox (2011) use weak labels of the state to obtain a MAP estimate
of the state trajectory and hyper-parameters. The weak labels of the state are
actually direct observations of the state contaminated with Gaussian noise.
Somehow, this is not the spirit of the model which should “discover” what
the state representation is given any sort of observations. In other words,
weak labels are nothing else than a particular type of observation that gives
a glimpse into what the state actually is. (Note that Ko and Fox (2011) has
a crucial technical problem in its Equation 14 which leads to the expression
p(x2, ...,xN−1,xN |x1,x2, ...,xN−1) that Wang et al. (2006) had successfully sidestepped.
In Chapter 3 of this thesis we provide a novel formulation of the model that
sheds light on this issue.)

Turner et al. (2010) presented an approach to learn a model based on the
state-space model with transition an emission GPs. They propose a parametric
model for the latent functions f(x) and g(x) that takes the form of a posterior
from Gaussian process regression whose input and output “datasets” are pa-
rameters to be tuned. A point estimate of the parameters for f(x) and g(x)

is learnt via maximum likelihood with Expectation Maximisation while treat-
ing the state trajectory as latent variables. Several approaches for filtering and
smoothing in this kind of models have been developed (Deisenroth et al., 2012;
Deisenroth and Mohamed, 2012; McHutchon, 2014). A related model was pre-
sented in (Ghahramani and Roweis, 1999) where the nonlinear latent functions
take the shape of Gaussian radial basis functions (RBFs) and learning is per-
formed with the EM algorithm using an Extended Kalman Smoother for the
E-step.

2.3. A ZOO OF GP-BASED DYNAMICAL SYSTEM MODELS 21

2.3.6 NON-MARKOVIAN-STATE MODEL WITH TRANSITION GP

Graphical model:

x0 x1 x2 x3 x4

y0 y1 y2 y3 y4

f2 f3 f4... ...

Second order model, i.e. Xt−1 = {xt−1,xt−2}.

Generative model:

f(X) ∼ GP
(
mf (X), kf (X,X′)

)
, (2.20a)

Xτx−1 ∼ p(Xτx−1), (2.20b)

ft = f(Xt−1), (2.20c)

xt | ft ∼ N (ft,Q), (2.20d)

yt | xt ∼ p(yt | xt,θy), (2.20e)

where
Xt−1 = {xt−1, ...,xt−τx}. (2.20f)

Description: This model is equivalent to a Markovian SSM (Section 2.3.3)
with a new state defined as zt = {xt, ...,xt−τx+1}. The reason for explicitly
including this model in the present review is that it can also be seen as a gener-
alisation of a nonlinear auto-regressive model (Section 2.3.2) with observation
noise.

Inference and Learning: As opposed to auto-regressive models, the present
model explicitly takes measurement noise into account. The observations y

can be considered noisy versions of some latent, uncorrupted, variables x. Ob-
servation noise in Equation (2.20e) does not affect the future trajectory of the
system. Rigorous inference and learning in this model is as computationally
demanding as for the equivalent Markovian SSM (Section 2.3.3). However,
in (Frigola and Rasmussen, 2013) we proposed a fast approximate method
that simultaneously filters y to approximate x and learns an auto-regressive
model on the approximate x. Any parameter from the preprocessing stage
(e.g. the cut-off frequency of a low pass filter) is optimised jointly with the
hyper-parameters of the model. See Chapter 6 for more details.

Another approach is to use GP regression with uncertain inputs (McHutchon
and Rasmussen, 2011; Damianou and Lawrence, 2015) to learn the auto-regressive
function. Note that this is also an approximation since it does not take into
account that some inputs to the regression problem are also outputs, e.g. x2

above is simultaneously a regression output of f(x0,x1) and an input in f(x1,x2).

22 2. TIME SERIES MODELLING WITH GAUSSIAN PROCESSES

2.3.7 GP-LVM WITH GP ON THE LATENT VARIABLES

Graphical model:

t0 t1 t2 t3

x0 x1 x2 x3... ...

g0 g1 g2 g3... ...

y0 y1 y2 y3

Generative model:

x(t) ∼ GP
(
mx(t), kx(t, t′)

)
, (2.21a)

g(x) ∼ GP
(
mg(x), kg(x,x

′)
)
, (2.21b)

xt = x(t), (2.21c)

gt = g(xt), (2.21d)

yt | gt ∼ N
(
gt, β

−1I
)
. (2.21e)

Description: This model can be interpreted as a particular case of a Gaus-
sian process latent variable model (GP-LVM, Lawrence (2005)) where the spher-
ical prior over latent variables has been substituted by a second Gaussian pro-
cess. This Gaussian process provides temporal correlations between the la-
tent variables which become a low-dimensional representation of the high-
dimensional observations y.

There is no explicit modelling of a nonlinear transition between successive
latent states xt. However, the use of a kernel kx(t, t′) such as the Ornstein-
Uhlenbeck covariance function would result in dynamics on the latent states
equivalent to those of a linear-Gaussian state-space model. Unfortunately, non-
linear state transitions, which are one of the strengths of GP-based state-space
models, can not be modelled.

Inference and Learning: Lawrence and Moore (2007) introduced this model
and sought a maximum a posteriori (MAP) solution with respect to the latent
states xt. More recently, Damianou et al. (2011) proposed a variational learning
algorithm that builds on the techniques developed for the Variational Bayesian
GP-LVM of Titsias and Lawrence (2010). This approach does not suffer from
the overfitting problems of the MAP solution and automatically determines the
dimensionality of the latent space when kg(x,x′) is chosen to be an automatic
relevance determination (ARD) kernel. An extension of this work to models
with deeper hierarchies has resulted in deep Gaussian processes (Damianou
and Lawrence, 2013).

2.4. WHY GAUSSIAN PROCESS STATE-SPACE MODELS? 23

Latent force models (Alvarez et al., 2009, 2013) can also be interpreted as
a particular case of GP-LVM with a GP on the latent variables. The variables
x in the top layer are the latent forces whereas the g layer encodes the linear-
Gaussian stochastic differential equation of the latent force model.

2.4 WHY GAUSSIAN PROCESS STATE-SPACE MOD-

ELS?

Gaussian Process State-Space Models are particularly appealing because they
enjoy the generality of nonlinear state-space models together with the flexi-
ble prior over the transition function provided by the Gaussian process. As
opposed to auto-regressive models, the presence of a latent state allows for a
succinct representation of the dynamics in the form of a Markov chain. The
state needs to contain only the information about the system that is essential to
determine its future trajectory. As a consequence, discovering a state represen-
tation for a system provides useful insights about its nature since it decouples
the observations that happen to be available from the dynamics.

A related advantage of state-space models over auto-regressive ones is that
observation noise can be explicitly taken into account. To train an auto-regressive
model, a time series is broken down into a set of input/output pairs and the
function mapping inputs to outputs is learnt with regression techniques. One
could use noise-in-the-inputs regression (also known as errors-in-variables) to
deal with observation noise. However, this would fail to exploit the fact that
the particular noise realisation affecting the observation yt is the same when
using yt as an input or as an output. When learning a state-space model,
the time series is not broken down into input/output pairs and inference and
learning are performed in a way that coherently takes into account observation
noise. This will be clearer in the learning algorithms of the following chapters.

24 2. TIME SERIES MODELLING WITH GAUSSIAN PROCESSES

Chapter 3

Gaussian Process State-Space
Models – Description

”Trying to understand a hidden Markov model from its observed time se-
ries is like trying to figure out the workings of a noisy machine from look-
ing at the shadows its moving parts cast on a wall, with the proviso that
the shadows are cast by a randomly-flickering candle.”

Shalizi (2008)

This chapter presents a novel formalisation of Gaussian Process State-Space
Models (GP-SSMs). In particular, we go beyond describing the joint probabil-
ity of the model and provide a practical approach to generate samples from its
prior. The insights provided by the new description of GP-SSMs will be ex-
ploited in the next chapters to derive learning and inference methods adapted
to the characteristics of the model. In addition, we present an equivalence re-
sult stating that GP-SSMs with GP priors on the transition and emission func-
tions can be reformulated into GP-SSMs with a GP only on the state transition
function.

3.1 GP-SSM WITH STATE TRANSITION GP

As presented in Section 2.3, there exist many flavours of GP-SSMs. For clarity,
in this section we shall restrict ourselves to a GP-SSM which has a Gaussian
process prior on the transition function but a parametric density to describe the
likelihood (i.e. the model introduced in Section 2.3.3). This particular model
contains the main feature that has made GP-SSMs hard to describe rigorously:
the states are simultaneously inputs and outputs of the state transition func-
tion. In other words, we want to learn a function whose inputs and outputs are
not only latent but also connected in a chain-like manner.

Given an observed time series {y1, ...,yT }, we construct a stochastic model

25

26 3. GAUSSIAN PROCESS STATE-SPACE MODELS – DESCRIPTION

that attempts to explain it by defining a chain of latent states {x0, ...,xT }

xt | xt−1 ∼ N (xt | f(xt−1),Q), (3.1a)

yt | xt ∼ p(yt | xt,θy), (3.1b)

where f(·) in an unknown nonlinear state transition function and Q and θy are
parameters of the state transition density and likelihood respectively. A com-
mon way to learn the unknown state transition function is to define a para-
metric form for it and proceed to learn its parameters. Common choices for
parametric state transition functions are linear functions (Shumway and Stof-
fer, 1982), radial basis functions (RBFs) (Ghahramani and Roweis, 1999) and
other types of neural networks.

GP-SSMs do not restrict the state transition function to a particular parame-
terised class of functions. Instead, they place a Gaussian process prior over the
infinite-dimensional space of functions. This prior can encode assumptions
such as continuity or smoothness. In fact, with an appropriate choice of the
covariance function, the GP prior puts probability mass over all continuous
functions (Micchelli et al., 2006). In other words, as opposed to parameterised
functions, GPs do not restrict a priori the class of continuous functions that can
be learnt provided that one uses covariance functions that are universal kernels
(Micchelli et al., 2006). The squared exponential is an example of such a kernel.

The generative model for a GP-SSM with a GP prior over the state transition
function and an arbitrary parametric likelihood is

f(x) ∼ GP
(
m(x), k(x,x′)

)
, (3.2a)

x0 ∼ p(x0), (3.2b)

ft = f(xt−1), (3.2c)

xt | ft ∼ N (xt | ft,Q), (3.2d)

yt | xt ∼ p(yt | xt,θy). (3.2e)

In order to get an intuitive understanding of this model, it can be useful to
devise a method to generate synthetic data from it. An idealised approach to
generate data from a GP-SSM could consist in first sampling a state transition
function (i.e. an infinite-dimensional object) from the GP. This only needs to
happen once. Then the full sequence of states can be generated by first sam-
pling the initial state x0 and then sequentially sampling the rest of the chain
{f1,x1, ..., fT ,xT }. Each observation yt can be sampled conditioned on its cor-
responding state xt.

However, this idealised sampling procedure can not be implemented in
practice. The reason for this is that it is not possible to sample an infinite-
dimensional function and store it in memory. Instead, we will go back to the
definition of a Gaussian process and define a practical sampling procedure for
the GP-SSM.

A Gaussian process is defined as a collection of random variables, any finite

3.1. GP-SSM WITH STATE TRANSITION GP 27

number of which have a joint Gaussian distribution (Rasmussen and Williams,
2006). However, in a GP-SSM, there is additional structure linking the vari-
ables. A sequential sampling procedure provides insight into what this struc-
ture is. To sample ft, instead of conditioning on an infinite-dimensional func-
tion, we condition only on the transitions {xi−1, fi}t−1

i=1 seen up to that point.
For a zero-mean GP

x0 ∼ p(x0), (3.3a)

f1 | x0 ∼ N (f1 | 0, k(x0,x0)) , (3.3b)

x1 | f1 ∼ N (x1 | f1,Q), (3.3c)

f2 | f1,x0:1 ∼ N (f2 | k(x1,x0)k(x0,x0)−1f1,

k(x1,x1)− k(x1,x0)k(x0,x0)−1k(x0,x1)), (3.3d)

x2 | f2 ∼ N (x2 | f2,Q), (3.3e)

f3 | f1:2,x0:2 ∼ N (f3 | [k(x2,x0) k(x2,x1)]

[
k(x0,x0) k(x0,x1)

k(x1,x0) k(x1,x1)

]−1 [
f1

f2

]
,

k(x2,x2)− [k(x2,x0) k(x2,x1)]

[
k(x0,x0) k(x0,x1)

k(x1,x0) k(x1,x1)

]−1 [
k(x0,x2)

k(x1,x2)

]
),

(3.3f)

...

Since this notation is very cumbersome, we will use the shorthand notation
for kernel matrices

Ki:j,k:l ,

k(xi,xk) . . . k(xi,xl)

...
...

k(xj ,xk) . . . k(xj ,xl)

 , (3.4)

and Ki:j , Ki:j,i:j . Note that the covariance function k(·, ·) returns a matrix
of the same size as the state in an analogous manner to multi-output Gaussian
processes (Rasmussen and Williams, 2006). With this notation, equations (3.3)
become

x0 ∼ p(x0), (3.5a)

f1 | x0 ∼ N (f1 | 0,K0) , (3.5b)

x1 | f1 ∼ N (x1 | f1,Q), (3.5c)

f2 | f1,x0:1 ∼ N (f2 | K1,0K
−1
0 f1, K1,1 −K1,0K

−1
0 K0,1), (3.5d)

x2 | f2 ∼ N (x2 | f2,Q), (3.5e)

f3 | f1:2,x0:2 ∼ N (f3 | K2,0:1K
−1
0:1f1:2, K2,2 −K2,0:1K

−1
0:1K0:1,2), (3.5f)

...

28 3. GAUSSIAN PROCESS STATE-SPACE MODELS – DESCRIPTION

0

time

st
at

es
0

time

0

time

0

time

Figure 3.1: State trajectories from four 2-state nonlinear dynamical systems sampled from a
GP-SSM prior with identical hyperparameters. The same prior generates systems with quali-
tatively different behaviours, e.g. the leftmost panel shows behaviour similar to that of a non-
oscillatory linear system whereas the rightmost panel appears to have arisen from a limit cycle
in a nonlinear system.

For a general time step, the key density is

p(ft | f1:t−1,x0:t−1) = N (ft |Kt−1,0:t−2K
−1
0:t−2f1:t−1,

Kt−1,t−1 −Kt−1,0:t−2K
−1
0:t−2K0:t−2,t−1), (3.6)

which is analogous to the predictive density in GP regression. In particular, it
corresponds to the prediction at a single test point xt−1 using inputs x0:t−2 and
noiseless outputs f1:t−1.

The joint distribution over latent and observed variables can be expressed
as

p(y1:T ,x0:T , f1:T) = p(x0)

T∏
t=1

p(yt | xt) p(xt | ft) p(ft | f1:t−1,x0:t−1). (3.7)

The behaviour of GP-SSMs is demonstrated in Figure 3.1 which shows four
independent state trajectories sampled from a GP-SSM. Equations (3.5) pro-
vided the sequential procedure used for sampling. The richness of the nonlin-
ear dynamics allowed by a squared exponential kernel allow for very different
qualitative behaviour.

3.1.1 AN IMPORTANT REMARK

At this point, it is useful to note that

T∏
t=1

p(ft | f1:t−1,x0:t−1) = N
(
f1:T | 0,K0:T−1

)
. (3.8)

Equation (3.8) provides a “telescopic” expression where each ft depends on the
previous f1:t−1 and x0:t−1. The conditioning on x only up to time t−1 is critical.
If we were to condition on the full state trajectory x0:T , the distribution over
f1:T would be markedly different. In particular, we would be facing a problem
akin to GP regression where we would be looking at the posterior distribution
over the latent function values conditioned on inputs x0:T−1 and noisy outputs

3.1. GP-SSM WITH STATE TRANSITION GP 29

x1:T

p(f1:T | x0:T) = N
(
f1:T |K0:T−1K̃

−1
0:T−1x1:T ,

K0:T−1 −K0:T−1K̃
−1
0:T−1K

>
0:T−1

)
, (3.9)

with K̃0:T−1 , K0:T−1 + IT ⊗Q. As one could expect, this expression reduces
to f1:T = x1:T if Q = 0.

We can summarise the previous argument by stating that

T∏
t=1

p(ft | f1:t−1,x0:t−1) = N
(
f1:T | 0,K0:T−1

)
6= p(f1:T | x0:T). (3.10)

For completeness, we provide the expressions for an arbitrary mean func-
tion where we use m0:t , [m(x0)>, ...,m(xt)

>]>:

T∏
t=1

p(ft | f1:t−1,x0:t−1) = N
(
f1:T |m0:T−1,K0:T−1

)
, (3.11)

and

p(f1:T | x0:T) = N
(
f1:T |m0:T−1 + K0:T−1K̃

−1
0:T−1(x1:T −m0:T−1),

K0:T−1 −K0:T−1K̃
−1
0:T−1K

>
0:T−1

)
. (3.12)

3.1.2 MARGINALISATION OF f1:T

By marginalising out the variables f1:T we will obtain a prior distribution over
state trajectories that will be particularly useful for learning GP-SSMs with
sample-based approaches (Chapter 4). The density over latent variables in a
GP-SSM is

p(x0:T , f1:T) = p(x0)

T∏
t=1

p(xt | ft) p(ft | f1:t−1,x0:t−1) (3.13a)

= p(x0) N (x1:T | f1:T , IT ⊗Q) N (f1:T |m0:T−1,K0:T−1). (3.13b)

Marginalising with respect to f1:T we obtain the prior distribution over the
latent state trajectory

p(x0:T) =

∫
p(x0:T , f1:T) df1:T (3.14a)

= p(x0)

∫
N (x1:T | f1:T , IT ⊗Q) N (f1:T |m0:T−1,K0:T−1) df1:T

(3.14b)

= p(x0)|(2π)nxT K̃0:T−1|−
1
2 exp(−1

2
(x1:T −m0:T−1)>K̃−1

0:T−1(x1:T −m0:T−1)),

(3.14c)

which is the density provided in (Wang et al., 2006) albeit in a slightly different
form.

30 3. GAUSSIAN PROCESS STATE-SPACE MODELS – DESCRIPTION

0.0920.0940.0960.098
0.1

0.092
0.094

0.096
0.098

0.1
0.102

0.104

2000

4000

6000

8000

x
1

x
2

p(
x 1,x

2|x
0,x

3)

Figure 3.2: Density function p(x1:2 | x0 = 0.1, x3 = 0.095) for a one-state GP-SSM.

To solve the integral in equation 3.14b we have used a standard result from
integrating a product of Gaussians. However, the resulting distribution is not
Gaussian. The fact that K0:T−1 already depends on x0:T−1 results in equa-
tion (3.14c) not being Gaussian in x0:T . This is clear in Figure 3.2 which shows
how the conditional distributions of p(x0:3) are far from Gaussian.

Although the prior distribution over state trajectories p(x0:T) is not Gaus-
sian, it can be expressed as a product of Gaussians

p(x0:T) = p(x0)

T∏
t=1

p(xt | x0:t−1) (3.15a)

= p(x0)

T∏
t=1

N
(
xt | µt(x0:t−1),Σt(x0:t−1)

)
, (3.15b)

with

µt(x0:t−1) = mt−1 + Kt−1,0:t−2K̃
−1
0:t−2 (x1:t−1 −m0:t−2), (3.15c)

Σt(x0:t−1) = K̃t−1 −Kt−1,0:t−2K̃
−1
0:t−2K

>
t−1,0:t−2 (3.15d)

for t ≥ 2 and µ1(x0) = m0, Σ1(x0) = K̃0. Equation (3.15b) follows from
the fact that, once conditioned on x0:t−1, the distribution over xt corresponds
to the predictive density of GP regression at a single test point xt−1 condi-
tioned on inputs x0:t−2 and noisy outputs x1:t−1. Note that naive evaluation
of Equation (3.15) has complexity O(T 4) whereas Equation (3.14) can be eval-
uated straightforwardly in O(T 3).

3.1.3 MARGINALISATION OF f(x)

So far in this chapter, we have provided a constructive method to obtain the
joint probability density of a GP-SSM. This approach sidestepped having to
deal with infinite-dimensional objects. Here, following (Turner et al., 2015), we
re-derive the density over the latent variables of a GP-SSM by starting from a
joint distribution containing a Gaussian process and marginalising it to obtain
a joint distribution over a finite number of variables. The goal of the presenta-
tion below is to provide an intuition for the marginalisation of the latent func-
tion f(·). Strictly speaking, however, conventional integration over an infinite
dimensional object such as f(·) is not possible and the derivation below should

3.2. GP-SSM WITH TRANSITION AND EMISSION GPS 31

be considered just a sketch. We refer the reader to (Matthews et al., 2015) for
a much more technical exposition of integration of infinite dimensional objects
in the context of sparse Gaussian processes.

We start with a joint distribution of the state trajectory and the random
function f(·)

p(x0:T , f(·)) = p(f(·)) p(x0)

T∏
t=1

p(xt|xt−1, f(·),Q), (3.16)

and introduce new variables ft = f(xt−1) which, in probabilistic terms can be
defined as a Dirac delta p(ft | f(·),xt−1) = δ(ft − f(xt−1)).

p(x0:T , f1:T , f(·)) = p(f(·)) p(x0)

T∏
t=1

p(xt|ft,Q)p(ft | f(·),xt−1), (3.17)

By integrating the latent function at every point other than x0:T−1 we obtain

p(x0:T , f1:T) =

∫
p(x0:T , f1:T , f(·)) df\x0:T−1

(3.18a)

= p(x0)

(
T∏
t=1

N (xt|ft,Q)

)∫
p(f(·))

T∏
t=1

δ(ft − f(xt−1)) df\x0:T−1

(3.18b)

= p(x0) N (x1:T | f1:T , IT ⊗Q) N (f1:T |m0:T−1,K0:T−1), (3.18c)

which recovers the joint density from equation (3.13b)

3.2 GP-SSM WITH TRANSITION AND EMISSION GPS

GP-SSMs containing a nonlinear emission function with a GP prior have also
been studied in the literature (see Section 2.3.5). In such a model, the nonlinear
function g(xt) in the state-space model

xt | xt−1 ∼ N (xt | f(xt−1),Q), (3.19a)

yt | xt ∼ N (yt | g(xt),R), (3.19b)

also has a GP prior which results in a generative model described by

f(x) ∼ GP
(
mf (x), kf (x,x′)

)
, (3.20a)

g(x) ∼ GP
(
mg(x), kg(x,x

′)
)
, (3.20b)

x0 ∼ p(x0), (3.20c)

ft = f(xt−1), (3.20d)

xt | ft ∼ N (xt | ft,Q), (3.20e)

gt = g(xt), (3.20f)

yt | gt ∼ N (yt | gt,R). (3.20g)

32 3. GAUSSIAN PROCESS STATE-SPACE MODELS – DESCRIPTION

This variant of GP-SSM is a straightforward extension to the one with a
parametric observation model. The distribution over latent states and tran-
sition function values is the same. However, an observation at time t is not
conditionally independent of the rest of the observations given xt. The joint
probability distribution of this model is

p(y1:T ,g1:T ,x0:T , f1:T) = p(x0:T , f1:T) p(g1:T |x1:T)

T∏
t=1

p(yt|gt) (3.21a)

= p(x0:T , f1:T) N (g1:T |m(g)
1:T ,K

(g)
1:T)

T∏
t=1

N (yt | gt,R).

(3.21b)

Where p(x0:T , f1:T) is the same as in Equation (3.7) and m(g) and K(g) denote
the mean function vector and kernel matrix using the mean and covariance
functions in Equation (3.20b).

3.2.1 EQUIVALENCE BETWEEN GP-SSMS

In the following, we present an equivalence result between the two GP-SSM
variants introduced in this chapter. We show how the model with nonlineari-
ties for both the transition and emission functions (Sec. 2.3.5 and 3.2) is equiv-
alent to a model with a redefined state-space but which only has a nonlinear
function in the state transition (Sec. 2.3.3 and 3.1).

We consider state-space models with independent and identically distributed
additive noise

xt+1 = f(xt) + vt, (3.22a)

yt = g(xt) + et. (3.22b)

In GP-SSMs, Gaussian process priors are placed over f and g in order to
perform inference on those functions.

THEOREM: The model in (3.22) is a particular case of the following model

zt+1 = h(zt) + wt, (3.23a)

yt = γγγt + et, (3.23b)

where zt , (ξξξt, γγγt) is the augmented state.

PROOF: Consider the case where

zt+1 = (ξξξt+1, γγγt+1) =
(
f(ξξξt), g(ξξξt)

)
+ (νννt, 0). (3.24)

3.3. SPARSE GP-SSMS 33

Then, the model in (3.23) can be written as

ξξξt+1 = f(ξξξt) + νννt, (3.25a)

γγγt+1 = g(ξξξt), (3.25b)

yt = γγγt + et. (3.25c)

If we now take ξξξt = xt+1 and νννt = vt+1 and substitute them in (3.25) we obtain

xt+1 = f(xt) + vt, (3.26a)

yt = g(xt) + et. (3.26b)

COROLLARY: A learning procedure that is able to learn an unknown state tran-
sition function can also be used to simultaneously learn both f(xt) and g(xt).

3.3 SPARSE GP-SSMS

Gaussian processes are very useful priors over functions that, in comparison
with parametric models, place very few assumptions on the shapes of the un-
known functions. However, this richness comes at a price: computational re-
quirements for training and prediction scale unfavourably with the size of the
training set. To alleviate this problem, methods relying on sparse Gaussian pro-
cesses have been developed that retain many of the advantages of vanilla Gaus-
sian processes while reducing the computational cost (Quiñonero-Candela and
Rasmussen, 2005; Titsias, 2009; Hensman et al., 2013, 2015).

Sparse Gaussian processes often rely on a number of inducing points. Those
inducing points, denoted by ui, are values of the unknown function at arbitrary
locations named inducing inputs

ui = f(zi). (3.27)

For conciseness of notation, we define the set with all inducing points u ,

{ui}Mi=1 and the set of their respective inducing inputs z , {zi}Mi=1. If we
place a Gaussian process prior over a function f , the inducing points are jointly
Gaussian with values of the latent function at any other location

p(f ,u) = N

([
f

u

] ∣∣ [mx

mz

]
,

[
Kx Kx,z

Kz,x Kz

])
. (3.28)

This method of explicitly representing the values of the function at an ad-
ditional finite number of input locations z is sometimes called augmentation.
However, one could argue that the model has not been augmented since the in-
ducing points were “already there”; we are simply assigning a variable name
to the value of the function at input locations z.

For regression, a variety of sparse GP methods have been developed by

34 3. GAUSSIAN PROCESS STATE-SPACE MODELS – DESCRIPTION

making additional assumptions on the relationships between function values
at the training, test and inducing inputs (Quiñonero-Candela and Rasmussen,
2005). More recently, a variational approach to sparse GPs (Titsias, 2009) has
resulted in sparse GP methods for a number of models (Titsias and Lawrence,
2010; Damianou et al., 2011; Hensman et al., 2013, 2015).

In Chapter 5 we will develop a variational inference approach for GP-SSMs.
It is then useful at this point to provide an explicit description of a GP-SSM with
inducing points. The latent variables of such a GP-SSM have the following joint
density

p(x0:T , f1:T ,u | z) = p(u | z) p(x0)

T∏
t=1

p(xt | ft) p(ft|f1:t−1,x0:t−1,u, z), (3.29)

where p(u|z) = N (mz,Kz). To lighten the notation, from now on we will omit
the explicit conditioning on inducing inputs z. The product of latent function
conditionals can be succinctly represented by the following Gaussian

T∏
t=1

p(ft|f1:t−1,x0:t−1,u) = N
(
f1:T |m0:T−1 + K0:T−1,zK

−1
z (u−mz),

K0:T−1 −K0:T−1,zK
−1
z K>0:T−1,z

)
, (3.30)

which is equivalent to the predictive density of GP regression with inputs z,
noiseless outputs u and test inputs x0:T−1. We emphasise again that this tele-
scopic product of conditionals is not the same as

p(f1:T |x0:T−1,u) =N
(
m0:T−1+

K0:T−1,{z,0:T−2}(K{z,0:T−2} + ΣΣΣQ)−1

(
u−mz

x1:T−1 −m0:T−2

)
,

K0:T−1 −K0:T−1,{z,0:T−2}(K{z,0:T−2} + ΣΣΣQ)−1K>0:T−1,{z,0:T−2}
)

(3.31)

where ΣΣΣQ = blockdiag(0, I ⊗ Q) takes into account that u are equivalent to
noiseless observations whereas neighbouring states are affected by process
noise with covariance Q.

In Section 5.7.1 we will highlight a number of parallelisms between sparse
GP-SSMs and Recurrent Neural Networks: a class of neural networks that is
currently receiving attention due to its ability to learn insightful representa-
tions of sequences (Sutskever, 2013; LeCun et al., 2015).

3.4 SUMMARY OF GP-SSM DENSITIES

Table 3.1 summarises the key densities for GP-SSMs introduced so far.

3.4. SUMMARY OF GP-SSM DENSITIES 35

p(y1:T ,x0:T , f1:T) Eq. (3.7)∏T
t=1 p(ft|f1:t−1,x0:t−1) Eq. (3.11)

p(f1:T |x0:T) Eq. (3.12)

p(x0:T , f1:T) Eq. (3.13b)

p(x0:T , f(·)) Eq. (3.16)

p(x0:T) Eqs. (3.14) & (3.15)

p(x0:T , f1:T ,u | z) Eqs. (3.29)∏T
t=1 p(ft|f1:t−1,x0:t−1,u) Eq. (3.30)

p(f1:T |x0:T−1,u) Eq. (3.31)

Table 3.1: Summary of GP-SSM densities.

36 3. GAUSSIAN PROCESS STATE-SPACE MODELS – DESCRIPTION

Chapter 4

Gaussian Process State-Space
Models – Monte Carlo
Learning

This chapter exploits insights from the novel description of Gaussian Process
State-Space Models presented so far to derive Bayesian learning methods based
on Monte Carlo sampling. In particular, we present a fully Bayesian approach
to jointly sample from all variables and a related Empirical Bayes method that
finds maximum likelihood estimates of the hyper-parameters while approxi-
mately marginalising the latent state trajectories.

This chapter introduces new learning methods for GP-SSMs originally pub-
lished in (Frigola et al., 2013) and (Frigola et al., 2014b) that rely on the new
expression for the prior density over the state trajectory expressed as a product
of Gaussians (Equation 3.15b).

4.1 INTRODUCTION

The sampling methods presented in this chapter make heavy use of recent ad-
vances in Particle Markov Chain Monte Carlo (PMCMC). In contrast to prior
work on learning GP-SSMs, we do not restrict ourselves to the case where the
dimensionality of the state-space is much lower than that of the observation
space.

The key feature of our approach is that we sample from the smoothing
distribution while the nonlinear dynamics are marginalised out. In other words,
samples from the posterior over state trajectories are obtained without hav-
ing to specify the dynamics of the system. This contrasts with conventional
approaches to smoothing where the smoothing distribution is conditioned on
fixed dynamics (Barber et al., 2011; Murphy, 2012).

The main advantage of Monte Carlo methods over approaches such as vari-
ational inference (Chapter 5) is that they do not rely on assumptions about the

37

38 4. GAUSSIAN PROCESS STATE-SPACE MODELS – MONTE CARLO LEARNING

shape of the posterior. Therefore, they are useful as a gold standard against
which to compare other learning algorithms. In terms of practical application,
however, they tend to suffer from longer computation time, in particular when
doing predictions.

4.2 FULLY BAYESIAN LEARNING

This section introduces a fully Bayesian approach to learning GP-SSMs. Learn-
ing the state transition function in a GP-SSM is particularly challenging be-
cause the states are not observed. The goal is to learn a function where both
its inputs and outputs are latent variables. Most previous approaches, see
(McHutchon, 2014) for an overview, hinge on learning a parametric approx-
imation to a GP-SSM. We address this problem in a fundamentally different
way that keeps alive all the nonparametric richness of the model.

Our approach is based on the key observation that learning the transition
function in a GP-SSM is equivalent to finding the smoothing distribution in that
model. In other words, once the smoothing distribution p(x0:T | y1:T ,θ) has
been found, the posterior over the state transition function can be straightfor-
wardly computed. The predictive distribution over f∗ = f(x∗), evaluated at an
arbitrary test point x∗, is

p(f∗ | x∗,y1:T ,θ) =

∫
p(f∗ | x∗,x0:T ,θ) p(x0:T | y1:T ,θ) dx0:T , (4.1)

where the distribution p(f∗ | x∗,x0:T ,θ) is equivalent to the predictive distri-
bution in Gaussian process regression using x0:T−1 as inputs and x1:T as noisy
outputs.

In practice, there are a number of parameters in a GP-SSM that we would
like to learn from data: hyper-parameters of the GP, covariance matrix Q,
etc. We employ a blocked Gibbs sampling approach which alternates between
sampling from the smoothing distribution p(x0:T |y1:T ,θ) and from the hyper-
parameters p(θ|y1:T ,x0:T). This results in a joint posterior distribution over
state trajectories and parameters p(x0:T ,θ|y1:T) that can be used to make pre-
dictions (Section 4.2.3).

4.2.1 SAMPLING STATE TRAJECTORIES WITH PMCMC

To obtain samples from p(x0:T | y1:T ,θ) we propose the use of Particle Markov
Chain Monte Carlo (PMCMC, Andrieu et al. (2010) and Appendix A.1). PM-
CMC is an influential recent technique that is particularly suited to sampling
from high-dimensional and highly correlated distributions.

One of the challenges of applying Monte Carlo methods to high dimen-
sional distributions with complex patterns of dependence is the design of ap-
propriate proposal distributions. The essence of PMCMC is the use of Sequen-
tial Monte Carlo to generate proposals of the highly correlated variables, in our
case, the state trajectory. Samples obtained with PMCMC can be interpreted as

4.2. FULLY BAYESIAN LEARNING 39

standard MCMC samples which leave the target density invariant for any fixed
number of particles greater than one. PMCMC algorithms are exact approxi-
mations to idealised MCMC algorithms targeting the smoothing distribution
(Andrieu et al., 2010).

PMCMC has a number of appealing properties:

• As opposed to Sequential Monte Carlo (SMC) methods, PMCMC pro-
vides true samples from the posterior distribution. SMC relies on im-
portance sampling of unnormalised distributions and would require an
infinite number of particles to be unbiased (Doucet and Johansen, 2011).

• PMCMC suffers less from path degeneracy than SMC. Path degeneracy
is the consequence of successive resampling in SMC that results in low
particle diversity at time points far from the final time instant (Lindsten
and Schön, 2013).

• PMCMC is simpler to tune by non-experts than Hamiltonian Monte-
Carlo. As a consequence, it is more amenable to automated learning.
Also, it does not require derivatives with respect to the latent variables
(i.e. the high-dimensional state trajectory).

To compute the smoothing distribution of a GP-SSM, we employ a specific
variant of PMCMC known as Particle Gibbs with Ancestor Sampling (PGAS,
Lindsten et al. (2014)) which we describe in more detail in Appendix A.1.1.
PGAS is particularly suited to non-Markovian models such as a GP-SSM where

p(x0:T) = p(x0)

T∏
t=1

N
(
xt | µt(x0:t−1),Σt(x0:t−1)

)
.

The PGAS algorithm has other appealing qualities such as good performance
with a small number of particles, the ability to avoid a smoothing backward
pass on the time series and a simpler implementation than the Particle Gibbs
with Backwards Simulation algorithm (Lindsten and Schön, 2013; McHutchon,
2014).

The PGAS algorithm requires us to be able to:

1. Sample from p(x0 | θ).

2. Sample from p(xt | x0:t−1,θ), Equation (3.15).

3. Evaluate the density p(xt:T | x0:t−1,θ) = p(x0:T |θ)
p(x0:t−1|θ) , Equation (3.14).

4. Evaluate the density p(yt | xt,θ).

All these operations are straightforward when using the GP-SSM formulation
introduced in Chapter 3. Leaving the technical details for Appendix A.1, Algo-
rithm 1 shows the necessary steps to learn GP-SSMs with PGAS.

40 4. GAUSSIAN PROCESS STATE-SPACE MODELS – MONTE CARLO LEARNING

Algorithm 1 Particle Gibbs with Ancestor Sampling (PGAS) for GP-SSMs

1. Set θ[0] and x0:T [0] arbitrarily.

2. for ` = 1 to L do

(a) Draw θ[`] conditionally on x0:T [`− 1] and y1:T (Section 4.2.2).
(b) Run a Conditional Particle Filter with Ancestor Sampling (Ap-

pendix A.1.1) targeting p(x0:T | θ[`],y1:T), conditionally on x0:T [`−
1]:

i. Set x̃0:T = x0:T [`− 1], the reference trajectory.
ii. Draw xi0 ∼ p(x0 | θ[`]) for i = 1, ..., N − 1.

iii. Set xN0 = x̃0.
iv. Set wi

0 = 1/N for i = 1, ..., N − 1.
v. for t = 1 to T do

A. Draw ait with P(ait = j) = wj
t−1 for i = 1, ..., N − 1.

B. Draw xit ∼ p(xt | x
ai
t

0:t−1,θ[`]) for i = 1, ..., N − 1. (Eq. 3.15b)

C. Draw aNt with P(aNt = j) ∝ wj
t−1 p(x̃t:T | xj0:t−1,θ[`]).

(Eq. 3.14, see Section 4.4 for an efficient implementation)
D. Set xNt = x̃t.
E. Set wi

t = p(yt | xit,θ[`]) for i = 1, ..., N

F. Normalise the weights wt to sum to 1.

(c) Sample k with P(k = i) = wiT and set x0:T [`] = xk0:T .

4.2.2 SAMPLING THE HYPER-PARAMETERS

The next step in our blocked Gibbs sampling approach is to sample the hyper-
parameters given a state trajectory and sequence of observations, i.e. sample
from p(θ | x0:T ,y1:T). In the common situation where there are distinct hyper-
parameters for the likelihood p(y1:T | x0:T ,θy) and for the prior over trajecto-
ries p(x0:T | θx), and if the prior over the hyper-parameters factorises between
those two groups we obtain

p(θ | x0:T ,y1:T) ∝ p(θy | x0:T ,y1:T) p(θx | x0:T). (4.2)

We can thus proceed to sample the two groups of hyper-parameters indepen-
dently. Sampling θy is straightforward in most cases, especially if conjugate
priors for the likelihood are used. Sampling θx will, nevertheless, be harder
since the covariance function hyper-parameters enter the expression in a non-
trivial way. However, we note that once the state trajectory is fixed, we are left
with a problem analogous to Gaussian process regression where x0:T−1 are the
inputs, x1:T are the noisy outputs and Q is the likelihood covariance matrix.
Given that the latent dynamics can be marginalised out analytically, sampling
the hyper-parameters with slice sampling (Neal, 2003) is straightforward for
GP-based models (Agarwal and Gelfand, 2005).

4.2. FULLY BAYESIAN LEARNING 41

4.2.3 MAKING PREDICTIONS

The predictive distribution for the value of the transition function at a particu-
lar test point x∗ is

p(f∗ | x∗,y1:T) =

∫
p(f∗ | x∗,x0:T ,θ) p(x0:T ,θ | y1:T) dx0:T dθ. (4.3)

Using a sample-based approximation of p(x0:T ,θ | y1:T), the predictive distri-
bution of a GP-SSM, Equation (4.14), can be approximated by

p(f∗ | x∗,y1:T) ≈ 1

L

L∑
`=1

p(f∗ | x∗,x0:T [`],θ[`]) (4.4a)

=
1

L

L∑
`=1

N (f∗ | µ`(x∗),Σ`(x∗)), (4.4b)

where L is the number of samples and µ`(x∗) and Σ`(x∗) follow the expres-
sions for the predictive distribution in standard GP regression if x0:T−1[`] are
treated as inputs, x1:T [`] are treated as outputs and Q[`] is the likelihood co-
variance matrix. This mixture of Gaussians is an expressive representation of
the predictive density which can, for instance, correctly take into account mul-
timodality arising from ambiguity in the measurements. Although factorised
covariance matrices can be pre-computed, the overall computational cost will
increase linearly with L and T . This is a consequence of having to average
over L samples of trajectories each having length T . The computational cost
can be reduced by thinning the Markov chain to use samples that are largely
uncorrelated.

A variational inference approach will be presented in Chapter 5 which avoids
averaging over samples at prediction time. As a result, it provides faster pre-
dictions.

4.2.4 EXPERIMENTS

4.2.4.1 LEARNING A NONLINEAR SYSTEM BENCHMARK

In the following, we use a nonlinear dynamical system benchmark that is pop-
ular within the sequential Monte Carlo community (Gordon et al., 1993)

xt+1 = axt + b
xt

1 + x2
t

+ cut + vt, vt ∼ N (0, q), (4.5a)

yt = dx2
t + et, et ∼ N (0, r), (4.5b)

with parameters (a, b, c, d, q, r) = (0.5, 25, 8, 0.05, 10, 1) and a known input ut =

cos(1.2(t + 1)). One of the challenging properties of this system is that the
quadratic measurement function (4.5b) tends to induce a bimodal distribution
in the marginal smoothing distribution. For instance, if we were to consider
only one measurement in isolation and r = 0 we would have xt = ±

√
yt
d .

Moreover, the state transition function (4.5a) exhibits a very sharp gradient in

42 4. GAUSSIAN PROCESS STATE-SPACE MODELS – MONTE CARLO LEARNING

RMSE prediction of
f∗|x∗

t ,u
∗
t , data

smoothing
x0:T |data

Ground truth model (known parameters) – 2.7± 0.5
GP-SSM (proposed, model B mean function) 1.7± 0.2 3.2± 0.5
Sparse GP-SSM (proposed, model B mean function) 1.8± 0.2 2.7± 0.4
Model B (fixed parameters) 7.1± 0.0 13.6± 1.1
Ground truth model, learnt parameters 0.5± 0.2 3.0± 0.4
Linear model, learnt parameters 5.5± 0.1 6.0± 0.5

Table 4.1: RMSE to ground truth values over 10 independent runs for the 1-dimensional non-
linear system benchmark.

the xt direction at the origin, but is otherwise well behaved as xt → ±∞.

The system is simulated for T = 200 time steps, using log-normal priors
for the hyper-parameters, and the PGAS sampler is then run for 50 iterations
using N = 20 particles. To illustrate the capability of the GP-SSM to make
use of a parametric model as baseline, we use a mean function with the same
parametric form as the true system, but parameters (a, b, c) = (0.3, 7.5, 0). This
function, denoted model B, is manifestly different to the actual state transition
(green vs. black surfaces in Figure 4.2).

Figure 4.1 shows the samples from the smoothing distribution (red). It is ap-
parent that the distribution covers two alternative state trajectories at particular
times (e.g. t = 10). In Figure 4.2 we plot samples from the smoothing distribu-
tion, where each circle corresponds to (xt,ut,E[ft]). Although the parametric
model used in the mean function of the GP (green) is clearly not representa-
tive of the true dynamics (black), the samples from the smoothing distribution
accurately portray the underlying system. The smoothness prior embodied
by the GP allows for accurate sampling from the smoothing distribution even
when the parametric model of the dynamics fails to capture important features.

To measure the predictive capability of the learnt transition dynamics, we
generate a new dataset consisting of 10 000 time steps and present the RMSE
between the mean of the predicted value of f(xt,ut) and the actual one. We
compare the results from GP-SSM with the predictions obtained from two para-
metric models (one with the true model structure and one linear model) and
two known models (the ground truth model and model B). We also report re-
sults for the sparse GP-SSM using an FIC prior with 40 inducing points. Ta-
ble 4.1 summarises the results, averaged over 10 independent training and test
datasets. We also report the RMSE from samples of the joint smoothing distri-
bution to the ground truth trajectory.

4.2.4.2 LEARNING A CART AND POLE SYSTEM

We apply our approach to learn a model of a cart and pole system used in re-
inforcement learning. The system consists of a cart, with a free-spinning pen-
dulum, rolling on a horizontal track. An external force is applied to the cart.
The system’s dynamics can be described by four states and a set of nonlinear
ordinary differential equations (Deisenroth, 2010). We learn a GP-SSM based
on 100 observations of the state corrupted with Gaussian noise. Although the

4.2. FULLY BAYESIAN LEARNING 43

0 10 20 30 40 50 60

−20

−15

−10

−5

0

5

10

15

20

Time

S
ta

te

Samples
Ground truth
±(max(y

t
,0)/d)1/2

Figure 4.1: Samples from the smoothing distribution. The cyan line shows states that could
have given rise to the current observation in the absence of observation noise. Note how in some
occasions the posterior distribution is clearly multimodal (e.g. t = 18).

−20
−15

−10
−5

0
5

10
15

20

−1

−0.5

0

0.5

1

−20

−15

−10

−5

0

5

10

15

20

x(t)u(t)

f(
t)

Figure 4.2: State transition function (black: actual transition function, green: mean function
(model B) and red: smoothing samples).

0 10 20 30 40 50
0

5

10

15

20

25

PMCMC Iteration

l
x

σ
x

l
u

σ
u

q
r

Figure 4.3: Hyper-parameter samples.

44 4. GAUSSIAN PROCESS STATE-SPACE MODELS – MONTE CARLO LEARNING

300 350
8

10

12

14

16

x

300 350

−2

0

2

ẋ

300 350

−10

−5

0

5

10

θ̇

300 350

−2

−1

0

1

2

θ

Figure 4.4: One time step ahead predictive distribution for each of the states of the cart and
pole system. Black: ground truth. Colored band: one standard deviation from the mixture of
Gaussians predictive.

training set only explores a small region of the 4-dimensional state space, we
can learn a model of the dynamics which can produce one step ahead predic-
tions such the ones in Figure 4.4. We obtain a predictive distribution in the
form of a mixture of Gaussians from which we display the first and second
moments. Crucially, the learnt model reports different amounts of uncertainty
in different regions of the state-space. For instance, note the narrower error-
bars on some states between t = 320 and t = 350. This is due to the model
being more confident in its predictions in areas that are closer to the training
data.

4.3 EMPIRICAL BAYES

An alternative approach to the fully Bayesian learning presented in Section 4.2
is to learn the hyper-parameters of the GP-SSM via maximum likelihood while
approximately marginalising the state trajectory. Maximum likelihood (ML)
is a widely used frequentist estimator of the parameters of statistical models.
The ML estimator θ̂ML is defined as the value of the parameters that makes the
available observations y1:T as likely as possible

θ̂ML = arg max
θ

p(y1:T | θ). (4.6)

The GP-SSM has two types of latent variables that need to be marginalised
(integrated out) in order to compute the likelihood

p(y1:T | θ) =

∫
p(y1:T ,x0:T , f1:T | θ) dx0:T df1:T

=

∫
p(y1:T | x0:T ,θ)

(∫
p(x0:T , f1:T | θ) df1:T

)
dx0:T . (4.7)

The latent variables f1:T can be marginalised analytically, Equations (3.14,3.15).
This is equivalent to integrating out the uncertainty in the unknown func-
tion f(x) and working directly with a prior over the state trajectories p(x0:T |
θ). This prior encodes assumptions (e.g. smoothness) about f(x) specified in
the Gaussian process prior over functions. Once the latent function has been

4.3. EMPIRICAL BAYES 45

marginalised, the likelihood becomes

p(y1:T | θ) =

∫
p(y1:T | x0:T ,θ) p(x0:T | θ) dx0:T . (4.8)

The integration with respect to x0:T , however, is not analytically tractable. This
difficulty will be addressed in the following section.

Direct application of maximum likelihood on p(y1:T |x0:T ,θy) to obtain es-
timates of the state trajectory and likelihood parameters would result in over-
fitting due to the large dimensionality of the state trajectory. However, by intro-
ducing a prior on the state trajectories and marginalising them as in (4.8), we
obtain the so-called marginal likelihood. Maximisation of the marginal like-
lihood with respect to the parameters results in a procedure known as type II
maximum likelihood or empirical Bayes (Bishop, 2006). Empirical Bayes reduces
the risk of over-fitting since it automatically incorporates a trade-off between
model fit and model complexity, a property often known as Bayesian Occam’s
razor (MacKay, 2003; Ghahramani, 2012).

In the context of GP-SSMs, an Empirical Bayes approach can be useful if one
has no meaningful prior over some of the hyper-parameters. For instance, this
could be the case for pseudo-inputs parameterising a FIC covariance function
(Section 4.4.1). If meaningful priors are available, we recommend using the
fully Bayesian approach from Section 4.2 since it has the same prediction cost
but handles uncertainty in the hyper-parameters.

4.3.1 PARTICLE STOCHASTIC APPROXIMATION EM

As pointed out above, direct evaluation of the marginal likelihood (4.8) is not
possible for a GP-SSM. However, by viewing the latent states x0:T as missing
data, we are able to evaluate the complete data log-likelihood

log p(y1:T ,x0:T | θ) = log p(y1:T | x0:T ,θ) + log p(x0:T | θ). (4.9)

We therefore turn to the Expectation-Maximisation (EM) algorithm (Dempster
et al., 1977). The EM algorithm uses Equation (4.9) to construct a surrogate cost
function for the maximum likelihood problem, defined as

Q(θ,θ′) =

∫
p(x0:T | y1:T ,θ

′) log p(y1:T ,x0:T | θ) dx0:T . (4.10)

Expectation-maximisation is an iterative procedure that maximises (4.8) by it-
erating two steps, expectation (E) and maximisation (M),

E: Find Q(θ,θk−1).

M: Find θk = arg maxθ Q(θ,θk−1).

The resulting sequence {θk}k≥0 will, under weak assumptions, converge to a
local maximum of the marginal likelihood p(y1:T | θ).

46 4. GAUSSIAN PROCESS STATE-SPACE MODELS – MONTE CARLO LEARNING

To implement the above procedure it is necessary to compute the integral
in (4.10), which, in general, is not tractable for a GP-SSM. To deal with this dif-
ficulty, we employ a Monte-Carlo-based implementation of the EM algorithm,
referred to as Particle Stochastic Approximation EM (PSAEM) (Lindsten, 2013).
This procedure is a combination of stochastic approximation EM (SAEM) (De-
lyon et al., 1999) and Particle MCMC (Andrieu et al., 2010). PSAEM is a com-
petitive alternative to particle-smoothing-based EM algorithms as it enjoys bet-
ter convergence properties and has a much lower computational cost (Lind-
sten, 2013). The method maintains a stochastic approximation of the auxiliary
quantity (4.10), Q̂k(θ) ≈ Q(θ,θk−1). This approximation is updated according
to

Q̂k(θ) = (1− γk)Q̂k−1(θ) + γk log p(y1:T ,x0:T [k] | θ). (4.11)

Here, {γk}k≥0 is a sequence of step sizes, satisfying the usual stochastic ap-
proximation conditions:

∑
k γk = ∞ and

∑
k γ

2
k < ∞ (Robbins and Monro,

1951). A typical choice is to take γk = k−p with p ∈]0.5, 1], where a smaller
value of p gives a more rapid convergence at the cost of higher variance. In
the vanilla SAEM algorithm, x0:T [k] is a draw from the smoothing distribution
p(x0:T | y1:T ,θk−1). In this setting, (Delyon et al., 1999) show that using the
stochastic approximation (4.11) instead of (4.10) in the EM algorithm results in
a valid method, i.e. {θk}k≥0 will still converge to a maximiser of the marginal
likelihood p(y0:T | θ).

The PSAEM algorithm is an extension of SAEM which is useful when it
is not possible to easily sample from the joint smoothing distribution. This is
indeed the case in our setting. Instead of sampling from the smoothing dis-
tribution, the sample state trajectory x0:T [k] in Equation (4.11) may be drawn
from an ergodic Markov kernel, leaving the smoothing distribution invariant.
Under suitable conditions on the kernel, this will not violate the validity of
SAEM, see (Andrieu et al., 2005; Andrieu and Vihola, 2011).

In PSAEM, the Markov kernel on the space of trajectories, denoted asPNθ (x?0:T | x̃0:T),
is constructed using PMCMC theory. In particular, we use the Particle Gibbs
with Ancestor Sampling algorithm (PGAS, Lindsten et al. (2014)) that we de-
scribed in Section 4.2. PGAS is a sequential Monte Carlo method, akin to a
standard particle filter, but with the difference that one particle at each time
point is specified a priori. This reference state trajectory, denoted as x̃0:T , can be
thought of as guiding the particles of the particle filter to the “correct” regions
of the state-space. More formally PGAS defines a Markov kernel which leaves
the joint smoothing distribution invariant, i.e. for any θ∫

PNθ (x?0:T | x̃0:T)p(x̃0:T | y1:T ,θ) dx̃0:T = p(x?0:T | y1:T ,θ). (4.12)

The PGAS kernel is indexed by N , which is the number of particles used in
the underlying particle filter. Note that the desired property (4.12) holds for
any number of particles, i.e. the number of particles only affects the mixing

4.3. EMPIRICAL BAYES 47

Algorithm 2 PSAEM for GP-SSMs

1. Set θ0 and x0:T [0] arbitrarily. Set Q̂0(θ) ≡ 0.

2. for k ≥ 1 do

(a) Simulate x0:T [k] ∼ PNθk−1
(· | x0:T [k − 1]) (run CPF-AS in Appendix

A.1.1 and set x0:T [k] to one of the particle trajectories sampled ac-
cording to their importance weights).

(b) Update Q̂k(θ) according to (4.11).

(c) Compute θk = arg maxθ Q̂k(θ).

of the Markov kernel. A larger N implies faster mixing, which in turn results
in better approximations of the auxiliary quantity (4.11). However, it has been
experienced in practice that the correlation between consecutive trajectories
drops of quickly as N increases (Lindsten and Schön, 2013; McHutchon, 2014)
and, for many models, a moderate N (e.g. in the range 5–20) is enough to get a
rapidly mixing kernel.

Next, we address the M-step of the EM algorithm. Maximising the quan-
tity (4.11) will typically not be possible in closed form. Instead, a numerical
optimisation routine can be used (e.g. a quasi-Newton method such as BFGS).
Using Equation (4.9), the gradient of the complete data log-likelihood can be
written as

∂

∂θ
log p(y0:T ,x0:T | θ) =

T∑
t=1

∂

∂θ
log p(yt | xt,θ) +

T∑
t=1

∂

∂θ
log p(xt | x0:t−1,θ)

+
∂

∂θ
log p(x0 | θ), (4.13)

The resulting PSAEM algorithm for learning of GP-SSMs is summarised in Al-
gorithm 2.

4.3.2 MAKING PREDICTIONS

Making predictions with a maximum likelihood estimate of the parameters is
analogous to the fully Bayesian case except that the parameters are not marginalised
out. The predictive distribution for the value of the transition function at a par-
ticular test point x∗ is

p(f∗ | x∗,y1:T) ≈
∫
p(f∗ | x∗,x0:T , θ̂ML) p(x0:T | y1:T , θ̂ML) dx0:T . (4.14)

Since we have a sample-based approximation of the posterior over state
trajectories p(x0:T | y1:T), the predictive distribution of the GP-SSM can be

48 4. GAUSSIAN PROCESS STATE-SPACE MODELS – MONTE CARLO LEARNING

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Iteration

l
x

l
u

q

r

Figure 4.5: Convergence of parameters when learning a linear system using a linear covariance
function.

approximated by a mixture of Gaussians

p(f∗ | x∗,y1:T) ≈ 1

L

L∑
`=1

p(f∗ | x∗,x0:T [`], θ̂ML) (4.15a)

=
1

L

L∑
`=1

N (f∗ | µ`(x∗),Σ`(x∗)). (4.15b)

4.3.3 EXPERIMENTS

In this section we present the results of applying PSAEM to learn various dy-
namical systems.

4.3.3.1 LEARNING A LINEAR SYSTEM

Although GP-SSMs are particularly suited to nonlinear system identification,
we start by illustrating the Empirical Bayes learning approach with a simple
linear system

xt+1 = 0.8 xt + 3 ut + vt, vt ∼ N (0, 1.5), (4.16a)

yt = 2 xt + et, et ∼ N (0, 1.5), (4.16b)

excited by a periodic input. The GP-SSM can model this linear system by using
a linear covariance function for the GP. This covariance function imposes, in a
somewhat indirect fashion, that the state-transition function in Equation (4.16a)
must be linear. A GP-SSM with linear covariance function is formally equiv-
alent to a linear state-space model where a Gaussian prior is placed over the
unknown parameters (Rasmussen and Williams, 2006, Section 2.1). The hyper-
parameters of the covariance function are equivalent to the variances of a zero-
mean prior over A and B. Therefore, the application of PSAEM to this partic-
ular GP-SSM can be interpreted as finding the hyper-parameters of a Gaussian
prior over the parameters of the linear model that maximise the likelihood of
the observed data whilst marginalising over A and B. In addition, the likeli-
hood will be simultaneously optimised with respect to the process noise and
measurement noise variances (q and r respectively).

4.3. EMPIRICAL BAYES 49

−2 0 2
−3

−2

−1

0

1

2

3

true f
t+1

−x
t

(a)

pr
ed

ic
te

d
f t+

1−
x t

−2 0 2

−3

−2

−1

0

1

2

3

true f
t+1

−x
t

(b)

pr
ed

ic
te

d
f t+

1−
x t

Figure 4.6: Linear dynamical system learnt using a GP-SSM with linear covariance function.
Predictions (a) on training data, and (b) on test data (see text for more details).

0 20 40 60 80 100
0

2

4

6

8

10

12

14

Iteration

λ

x
λ

u
σ

f

q

r

Figure 4.7: Convergence of parameters when learning a linear system using a squared exponen-
tial covariance function.

Figure 4.5 shows the convergence of the GP hyper-parameters (lx and lu)
and noise parameters with respect to the PSAEM iteration. In order to judge
the quality of the learnt GP-SSM we evaluate its predictive performance on
the data set used for learning (training set) and on an independent data set
generated from the same dynamical system (test set). The GP-SSM can make
probabilistic predictions which report the uncertainty arising from the fact that
only a finite amount of data is observed.

Figure 4.6 displays the predicted value of ft+1 − xt versus the true value.
Recall that ft+1 − xt is equivalent to the step taken by the state in one single
transition before process noise is added: f(xt,ut)−xt. One standard deviation
error bars from the predictive distribution have also been plotted. Perfect pre-
dictions would lie on the unit slope line. We note that although the predictions
are not perfect, error-bars tend to be large in predictions that are far from the
true value and narrower for predictions that are closer to the truth. This is the
desired outcome since the goal of the GP-SSM is to represent the uncertainty
in its predictions.

We now move into a scenario in which the data is still generated by the
linear dynamical system in (4.16) but we pretend that we are not aware of this
linearity. In this case, a covariance function able to model nonlinear transi-
tion functions is a judicious choice. We use the squared exponential covari-
ance function which imposes the assumption that the state transition function
is smooth and infinitely differentiable (Rasmussen and Williams, 2006). Fig-
ure 4.7 shows, for a PSAEM run, the convergence of the covariance function

50 4. GAUSSIAN PROCESS STATE-SPACE MODELS – MONTE CARLO LEARNING

−2 0 2
−3

−2

−1

0

1

2

3

true f
t+1

−x
t

(a)

pr
ed

ic
te

d
f t+

1−
x t

−2 0 2

−4

−2

0

2

true f
t+1

−x
t

(b)

pr
ed

ic
te

d
f t+

1−
x t

Figure 4.8: Linear dynamical system learnt using a GP-SSM with squared exponential covari-
ance function. Predictions (a) on training data, and (b) on test data.

−20
−10

0
10

20

−1

−0.5

0

0.5

1

−20

−10

0

10

20

x
u

f(
x,

u)

Figure 4.9: Nonlinear dynamical system with one state and one input. The black mesh represents
the ground truth dynamics function and the colored surface is the mean of the identified function.
Color is proportional to the standard deviation of the identified function (red represents high
uncertainty and blue low uncertainty).

hyper-parameters (length-scales λx and λu and signal variance σf) and also
the convergence of the noise variances.

The predictive performance on training data and independent test data is
presented in Figure 4.8. Interestingly, in the panel corresponding to training
data (a), there is particularly poor prediction that largely underestimates the
value of the state transition. However, the variance for this prediction is very
high which indicates that the identified model has little confidence in it. In
this particular case, the mean of the prediction is 2.5 standard deviations away
from the true value of the state transition.

4.3.3.2 LEARNING A NONLINEAR SYSTEM

GP-SSMs are particularly powerful for nonlinear system identification when it
is not possible to create a parametric model of the system based on detailed
knowledge about its dynamics. To illustrate this capability of GP-SSMs we use

4.4. REDUCING THE COMPUTATIONAL COMPLEXITY 51

10 20 30 40 50 60 70 80 90

−20

−15

−10

−5

0

5

10

15

20

t

x

Figure 4.10: State trajectory from a test data set (solid black line). One step ahead predictions
made with the identified model are depicted by a dashed line (mean) and a colored interval at±1
standard deviation (including process noise).

again the nonlinear dynamical system defined by

xt+1 = axt + b
xt

1 + x2
t

+ cut + vt, vt ∼ N (0, q), (4.17a)

yt = dx2
t + et, et ∼ N (0, r), (4.17b)

with parameters (a, b, c, d, q, r) = (0.5, 25, 8, 0.05, 10, 1) and a known input ut =

cos(1.2(t+ 1)).
Again, we pretend that detailed knowledge about the particular form of (4.17a)

is not available to us. We select a covariance function that consists of a Matérn
covariance function in the x direction and a squared exponential in the u di-
rection. The Matérn covariance function imposes less smoothness constraints
than the squared exponential (Rasmussen and Williams, 2006) and is therefore
more suited to model functions that can have sharp transitions.

Figure 4.9 shows the true state transition dynamics function (black mesh)
and the identified function as a colored surface. Since the identified function
from the GP-SSM comes in the form of a probability distribution over func-
tions, the surface is plotted at E[f∗|x∗,u∗,y1:T]. The standard deviation of f∗,
which represents our uncertainty about the actual value of the function, is de-
picted by the color of the surface. Figure 4.10 shows the one step ahead predic-
tive distributions p(x∗t+1|x∗t ,u∗t ,y0:T) on a test data set.

4.4 REDUCING THE COMPUTATIONAL COMPLEXITY

4.4.1 FIC COVARIANCE FUNCTION

The computational complexity of learning GP-SSMs can be reduced by using
sparse covariance functions for the GP. In the following we present the use of
the Fully Independent Conditional (FIC) covariance function first introduced
in (Snelson and Ghahramani, 2006) and christened as such in (Quiñonero-Candela
and Rasmussen, 2005). The model arising from the use of this particular co-
variance function does not need to be seen as an approximation to the “full”
GP-SSM, it is still a GP-SSM, but with a different prior over functions. As a result,

52 4. GAUSSIAN PROCESS STATE-SPACE MODELS – MONTE CARLO LEARNING

it could even outperform its non-sparse version in the same way as it happens
in some regression problems (Snelson and Ghahramani, 2006).

Most sparse GP methods can be formulated in terms of a set of inducing
variables (Quiñonero-Candela and Rasmussen, 2005; Titsias, 2009). These vari-
ables live in the space of the latent function and have a set z , {zi}Mi=1 of
corresponding inducing inputs. The assumption is that, conditionally on the
inducing variables, the latent function values are mutually independent. Al-
though the inducing variables are marginalised analytically, the inducing in-
puts have to be chosen in such a way that they, informally speaking, cover
the same region of the input space covered by the data. Crucially, in order to
achieve computational gains, the number M of inducing variables is selected
to be smaller than the original number of data points.

As shown in (Quiñonero-Candela and Rasmussen, 2005), the FIC prior is
obtained by replacing the covariance function k(·, ·) with

kFIC(xi,xj) = s(xi,xj) + δij
(
k(xi,xj)− s(xi,xj)

)
, (4.18)

where s(xi,xj) , k(xi, z)k(z, z)−1k(z,xj), δij is Kronecker’s delta and we use
the convention whereby when k(·, ·) takes a set as one of its arguments it gen-
erates a matrix of covariances. Using the Woodbury matrix identity, we can
express the one-step density p(xt|x0:t−1) of a GP-SSM, Equation (3.15b), as a
Gaussian with the following mean and covariance matrix

µFIC
t (x0:t−1) = mt−1 + Kt−1,zPKz,0:t−2Λ

−1
0:t−2 (x1:t−1 −m0:t−2), (4.19a)

ΣFIC
t (x0:t−1) = K̃t−1 − St−1 + Kt−1,zPKz,t−1, (4.19b)

where

P , (Kz + Kz,0:t−2Λ
−1
0:t−2K0:t−2,z)−1, (4.20a)

Λ0:t−2 , diag[K̃0:t−2 − S0:t−2], (4.20b)

SA,B , KA,zK
−1
z Kz,B. (4.20c)

Despite its apparent cumbersomeness, the computational complexity involved
in computing the above mean and covariance is O(M2t). This contrasts with
the O(t3) complexity for general covariance functions when evaluating Equa-
tion (3.15b).

4.4.2 SEQUENTIAL CONSTRUCTION OF CHOLESKY FACTORISA-
TIONS

A naive implementation of the CPF-AS algorithm gives rise to O(T 4) compu-
tational complexity, since at each time step t = 1, ..., T , a matrix of size T × T
needs to be factorised. However, it is possible to update and reuse the fac-
tors from the previous time step, bringing the total computational complexity
down to the familiar O(T 3). Furthermore, by introducing a sparse GP model,

4.5. CONCLUSIONS 53

we can reduce the complexity from O(M2T 2) to O(M2T) where M � T .
There are two costly operations of the CPF-AS algorithm: (i) sampling from

the prior, requiring the computation of Equations (3.15c) and (3.15d) and (ii)
evaluating the ancestor sampling probabilities which requires to evaluate the
joint density p(y1:T ,x0:T). Both of these operations can be carried out effi-
ciently by keeping track of a Cholesky factorisation of the matrix

K̃({xi0:t−1, x̃t:T−1}) = LitL
i>
t ,

for each particle i = 1, ..., N (see Section A.1.1 for the full PGAS algorithm).
Here, K̃({xi0:t−1, x̃t:T−1}) is a matrix defined analogously to K̃0:T−1, but where
the covariance function is evaluated for the concatenated state trajectory
{xi0:t−1, x̃t:T−1}. From Lit, it is possible to identify sub-matrices corresponding
to the Cholesky factors for the covariance matrix Σt(x

i
0:t−1) as well as for the

matrices needed to efficiently evaluate the ancestor sampling probabilities.
It remains to find an efficient update of the Cholesky factor to obtain Lit+1.

As we move from time t to t+1 in the algorithm, x̃t will be replaced by xit in the
concatenated trajectory. Hence, the matrix K̃({xi0:t, x̃t+1:T−1}) can be obtained
from K̃({xi0:t−1, x̃t:T−1}) by replacing nx rows and columns, corresponding to
a rank 2nx update. (Recall that nx is the dimensionality of the state-space.)
It follows that we can compute Lit+1 by making nx successive rank one up-
dates and downdates on Lit. Refer to (Gill et al., 1974) for a comprehensive
review of methods for rank-one update/downdate of Cholesky factors and to
the supplementary material of (Frigola et al., 2013) for a derivation tailored to
the current problem.

In summary, for an arbitrary covariance function, all the operations at a
specific time step can be done in O(T 2) computations, leading to a total com-
putational complexity ofO(T 3). For the GP-SSM with FIC covariance function,
a naive implementation gives rise toO(M2T 2) computational complexity. This
can be reduced toO(M2T) by keeping track of a factorisation for the matrix P.
However, to reach the O(M2T) cost, all intermediate operations scaling with
T have to be avoided, requiring the reuse of not only the matrix factorisations,
but also the intermediate matrix-vector multiplications.

4.5 CONCLUSIONS

We have shown how to directly sample from the smoothing distribution of a
GP-SSM without needing to know the nonlinear state transition function. Once
samples from the smoothing distribution have been obtained, it is straightfor-
ward to describe the posterior over the state transition function.

We have also shown how samples from the smoothing distribution can be
obtained using the Particle Gibbs with Ancestor Sampling algorithm (Lindsten
et al., 2014). This algorithm has proven to achieve very good mixing while be-
ing extremely easy to use. Although the PGAS algorithm is able to effectively
sample from very high-dimensional distributions for long time series (large T),

54 4. GAUSSIAN PROCESS STATE-SPACE MODELS – MONTE CARLO LEARNING

its reliance on a particle filter limits their effectiveness when the state dimen-
sion (nx) is large.

The fully Bayesian learning approach presented in this chapter obtains joint
samples from the smoothing distribution and the posterior distribution over
the (hyper-)parameters. Therefore, uncertainty about all unknown variables is
quantified. We have also presented an alternative empirical Bayes approach
which can find maximum likelihood point estimate over all, or some, (hyper-
)parameters. This can be useful for parameters over which it is hard to find a
meaningful prior, e.g. the inducing inputs of a FIC covariance function.

Chapter 5

Gaussian Process State-Space
Models – Variational Learning

In this chapter we introduce a Variational Inference approach to Bayesian learn-
ing of sparse Gaussian Process State-Space Models. The result of learning is
a tractable approximate posterior over nonlinear dynamical systems that can
provide very fast predictions at test time. In comparison to conventional para-
metric models this approach offers the possibility to straightforwardly trade
off model capacity and computational cost whilst preventing overfitting.

As opposed to the learning algorithms presented in Chapter 4, the varia-
tional approach does not exactly marginalise out the nonlinear dynamics. In-
stead, it learns an explicit posterior of the dynamical system by computing an
approximate posterior over the inducing variables of a sparse GP-SSM.

The presentation in this chapter expands the results previously published
in (Frigola et al., 2014a).

5.1 INTRODUCTION

A GP-SSM has, in principle, the ability to model nonlinear state transition func-
tions belonging to an infinite-dimensional space of functions. This contrasts
with parametric nonlinear functions in which the model capacity is restricted a
priori by the choice of the parametric form.

The sampling approaches introduced in Chapter 4 are able to learn the state
transition function of a GP-SSM without the need of parametric approxima-
tions. However, they do so at a cost: each prediction of a state transition needs
to average over samples of the latent state trajectory and hence has an O(TL)

computational cost where T is the length of the time series and L is the number
of samples.

The variational methods presented in this chapter will take a fundamentally
different approach: they will attempt to represent the posterior over the state
transition function with a finite number of parameters, the inducing points.
The methodology shares many elements with the seminal work of Titsias (2009)

55

56 5. GAUSSIAN PROCESS STATE-SPACE MODELS – VARIATIONAL LEARNING

for Gaussian process regression but is adapted to the challenging setting of
time series data. In a GP-SSM, the goal is to learn a function whose inputs and
outputs are both unobserved.

Variational methods for GP-SSMs have two fundamental advantages over
the Monte Carlo approaches presented in Chapter 4. First, they offer fast prob-
abilistic predictions at test time with a computational complexity that is inde-
pendent of the length of the time series. Second, mini-batch training is possi-
ble and leads to significant speed improvements when using large datasets. A
more detailed discussion about advantages and disadvantages of variational
inference is provided in Section 5.2.2.

5.2 EVIDENCE LOWER BOUND OF A GP-SSM

Variational inference is a popular method for approximate Bayesian inference
based on making assumptions about the posterior over parameters and latent
variables. These assumptions lead to a tractable lower bound on the marginal
likelihood of the model. The marginal likelihood is also known as the evidence
and its lower bound is sometimes referred to as the ELBO (Evidence Lower
BOund). An approximation of the evidence is the objective function that we
maximised for learning GP-SSMs in Section 4.3. In the variational inference
setting, maximising the evidence lower bound is equivalent to minimising the
Kullback-Leibler divergence between the approximate posterior and the exact
one. (See Appendix A.2 for a very brief presentation and (Jordan et al., 1999) for
an authoritative exposition.) Following standard variational inference method-
ology, we obtain the evidence lower bound of a GP-SSM augmented with in-
ducing points u (Section 3.3)

log p(y|θ) ≥ 〈log
p(x, f ,u,y)

q(x, f ,u)
〉q(x,f ,u)

= 〈log
p(u)p(x0)

∏T
t=1 p(ft|f1:t−1,x0:t−1,u)p(yt|xt)p(xt|ft)

q(x, f ,u)
〉q(x,f ,u).

(5.1)

In order to make the formulas slightly less cumbersome, we are using the short-
hand notation x , x0:T , y , y1:T , f , f1:T , u , u1:M , and 〈f(x)〉p(x) ,∫
f(x)p(x) dx.

At this point, it is critical to chose a variational distribution q(x, f ,u) that
presents a favourable trade-off between tractability and expressivity. Inspired
by a strand of work started by Titsias (2009), we chose a distribution for the
latent variables in the GP-SSM that leads to cancellation of difficult terms in-
volving the latent function. In particular, we use

q(x, f ,u) = q(u)q(x)

T∏
t=1

p(ft|f1:t−1,x0:t−1,u), (5.2)

where q(u) and q(x) can take any form at this stage and will be variationally

5.2. EVIDENCE LOWER BOUND OF A GP-SSM 57

optimised later. However, the terms relating to f are taken to match those of
the prior. As a consequence, the difficult p(ft|...) terms inside the log cancel out
and lead to the following lower bound

log p(y|θ) ≥ 〈log
p(u)p(x0)

∏T
t=1(((((((((

p(ft|f1:t−1,x0:t−1,u)p(yt|xt)p(xt|ft)
q(u)q(x)

∏T
t=1(((((((((

p(ft|f1:t−1,x0:t−1,u)
〉q(x,f ,u),

(5.3a)

= 〈log
p(u)p(x0)

∏T
t=1 p(yt|xt)p(xt|ft)
q(u)q(x)

〉q(x,f ,u), (5.3b)

, L(q(u), q(x),θ). (5.3c)

Equation (5.3c) makes it explicit that the evidence lower bound is a function of
the functions q(u) and q(x) and of the hyper-parameters θ. In the next section,
we will use the calculus of variations to optimise the ELBO with respect to
the functions q(u) and q(x). Now, we break down the ELBO into a sum of
interpretable terms

L(q(u), q(x),θ) =〈log
p(u)

q(u)
〉q(u) + 〈log

1

q(x)
〉q(x) + 〈log p(x0)〉q(x0)

+ 〈log

T∏
t=1

p(xt|ft)〉q(x,f ,u) + 〈log

T∏
t=1

p(yt|xt)〉q(x)

=− KL(q(u)‖p(u)) +H(q(x)) + 〈log p(x0)〉q(x0)

+

T∑
t=1

{
〈〈log p(xt|ft)〉p(ft|xt−1,u)︸ ︷︷ ︸

Φ(xt−1:t,u)

〉q(x)q(u) + 〈log p(yt|xt)〉q(x)

}
,

(5.4)

where KL denotes the Kullback-Leibler divergence

KL(q(u)‖p(u)) ,
∫
q(u) log

q(u)

p(u)
du, (5.5)

H denotes the entropy

H(q(x)) , −
∫
q(x) log q(x) dx. (5.6)

The integral with respect to ft in the lower bound can be solved analytically1:

Φ(xt−1:t,u) = 〈log p(xt|ft)〉p(ft|xt−1,u) (5.7a)

= 〈logN (xt|ft,Q)〉N (ft|At−1u,Bt−1) (5.7b)

= −1

2
tr(Q−1Bt−1) + logN (xt|At−1u,Q), (5.7c)

1for simplicity of interpretation, the derivation that follows in the rest of the chapter is for the
zero-mean GP case, see Section 5.7.3 for expressions for an arbitrary mean function

58 5. GAUSSIAN PROCESS STATE-SPACE MODELS – VARIATIONAL LEARNING

where

At−1 , Kt−1,zK
−1
z , (5.8a)

Bt−1 , Kt−1,t−1 −Kt−1,zK
−1
z Kz,t−1. (5.8b)

As we will see in Section 5.3.1, the distribution q(u) that maximises the
ELBO is a Gaussian distribution: N (u|µ,Σ). Therefore, the following expecta-
tion in the ELBO has a closed form expression

〈Φ(xt−1:t,u)〉q(u) =

∫
Φ(xt−1:t,u)N (u|µ,Σ) du (5.9a)

= −1

2
tr(Q−1(Bt−1 + At−1ΣA>t−1)) + logN (xt|At−1µ,Q).

(5.9b)

Therefore, the ELBO becomes

L(q(u), q(x),θ) =− KL(q(u)‖p(u)) +H(q(x)) + 〈log p(x0)〉q(x0)

+

T∑
t=1

{
− 1

2
〈tr(Q−1(Bt−1 + At−1ΣA>t−1))〉q(xt−1)

+ 〈logN (xt|At−1µ,Q)〉q(xt−1:t)

+ 〈log p(yt|xt)〉q(xt)

}
. (5.10)

5.2.1 INTERPRETATION OF THE LOWER BOUND

We can provide an interpretation of the influence that each term in Equation (5.10)
has when maximising the evidence lower bound

• −KL(q(u)‖p(u)) : regularisation term encouraging the approximate pos-
terior q(u) to remain close to the prior p(u) which encodes assumptions
(e.g. smoothness) about the state transition function.

• H(q(x)) : entropy term discouraging overly tight smoothing distribu-
tions over the state trajectories.

• 〈log p(x0)〉q(x0) : encourages the state trajectory to start in a region of the
state space where the prior is high. This term can be neglected if the prior
on the initial state is sufficiently broad.

• − 1
2 〈tr(Q

−1Bt−1)〉q(xt−1) : penalises states that are far from the inducing
inputs. This is apparent when interpreting Bt−1 as the predictive covari-
ance of GP regression at a test point xt−1 with z as the regression inputs
(5.8b). States close to the inducing inputs have little predictive variance
and result in a small penalty.

• − 1
2 〈tr(Q

−1At−1ΣA>t−1)〉q(xt−1) : penalises variance in the approximate
posterior q(u). It opposes the KL term between prior and posterior over

5.2. EVIDENCE LOWER BOUND OF A GP-SSM 59

u. The expression At−1ΣA>t−1 can be interpreted as the extra covari-
ance in a prediction of ft due to variance in the posterior of u, see Equa-
tion (5.27d).

• 〈logN (xt|At−1µ,Q)〉q(xt−1:t) : crucial term that quantifies the agreement
between neighbouring states (xt,xt−1) and the mean of the (approxi-
mate) posterior over the inducing points of the state transition function.

• 〈log p(yt|xt)〉q(xt) : data fit term encouraging state trajectories that give
high probability to the observed data.

5.2.2 PROPERTIES OF THE LOWER BOUND

As in other sparse GP models, variational inference gives the ability to obtain
an approximate posterior of the state transition function of a GP-SSM at the
locations of the inducing inputs. Away from those locations, the posterior takes
the form of the prior conditioned on the inducing variables. By increasing the
number of inducing variables, the ELBO can only become tighter (as in (Titsias,
2009)). This offers a straightforward trade-off between model capacity and
computation cost without increasing the risk of overfitting.

The evidence lower bound provided by variational inference is very useful
to obtain point estimates of hyper-parameters that approximate the maximum
likelihood solution. Also, in many applications it has been found that maximis-
ing the ELBO results in shorter training times compared to Monte Carlo-based
methods.

However, variational inference is based on making assumptions about the
shape of the approximate posterior such as factorisation assumptions or speci-
fying a particular parametric form for the approximate posterior. This contrasts
with Monte Carlo methods where no such assumptions are made.

As useful as variational inference is, it is important to keep in mind the
characteristics of the approximation. Perhaps the most important characteristic
is that approximations from variational inference tend to be more compact than
the true distribution (MacKay, 2003) although this is not strictly always the
case (Turner and Sahani, 2011). Underestimating uncertainty is an undesirable
property because it gives an illusion of certainty. However, as MacKay (2003)
argues, it is often better to underestimate uncertainty rather than to ignore it
altogether.

Another issue with variational inference is due to the fact that maximising
the evidence lower bound biases the solution towards areas where the bound
is tighter (Turner and Sahani, 2011). As a consequence, the optimal setting of
the parameters on the lower bound is not necessarily the maximum of the evi-
dence. The bias in the parameters will depend on the particular characteristics
of the lower bound that we chose to maximise.

60 5. GAUSSIAN PROCESS STATE-SPACE MODELS – VARIATIONAL LEARNING

5.2.3 ARE THE INDUCING INPUTS VARIATIONAL PARAMETERS?

The inducing inputs z appear both in the generative model of a sparse GP-
SSM, Equation (3.29), and in the variational distribution, Equation. (5.2). It
could appear that they are parameters of the model that are being reused in
the variational distribution much in the same way as the covariance function
hyper-parameters. However, on close observation it is apparent that the in-
ducing inputs in a sparse GP-SSM behave in a very particular manner: if the
inducing variables are integrated out, the marginal distribution over the rest of
variables (i.e. the non-sparse GP-SSM) does not depend on the inducing inputs∫

p(y,x, f ,u | z) du = p(y,x, f | z) = p(y,x, f). (5.11)

Since the location of the inducing inputs does not affect the distribution over
observed data, state trajectories or latent function, the inducing inputs become
parameters that can be tuned at our will. Adjusting the inducing inputs does
not change our assumptions about how the data was generated. But, crucially,
adjusting the inducing inputs changes the variational distribution q(x, f ,u)

and can lead to a tighter lower bound on the model evidence.

5.3 OPTIMAL VARIATIONAL DISTRIBUTIONS

5.3.1 OPTIMAL VARIATIONAL DISTRIBUTION FOR u

The optimal distribution for q(u) is a stationary point of the functionalL(q(u), q(x),θ).
The evidence lower bound has a stationary point with respect to the function
q(u) if and only if this function satisfies the Euler-Lagrange equation (Ap-
pendix A.2)

∂

∂q(u)

{
q(u) log

p(u)

q(u)
+ q(u)

T∑
t=1

〈Φ(xt−1:t,u)〉q(xt−1:t)

}
= 0, (5.12)

which results in an optimal distribution q∗(u)

0 = log
p(u)

q∗(u)
− 1 +

T∑
t=1

〈Φ(xt−1:t,u)〉q(xt−1:t), (5.13a)

log q∗(u) = log p(u)− 1 +

T∑
t=1

〈Φ(xt−1:t,u)〉q(xt−1:t), (5.13b)

which, after exponentiation, becomes

q∗(u) ∝ p(u)

T∏
t=1

exp〈logN (xt|At−1u,Q)〉q(xt−1:t). (5.14)

In the following, we show that the optimal variational distribution q∗(u)

is, conveniently, a multivariate Gaussian distribution. This is not an extra as-

5.3. OPTIMAL VARIATIONAL DISTRIBUTIONS 61

sumption that we have added to the variational inference but a natural conse-
quence of the evidence lower bound that is being maximised.

q∗(u) ∝ N (u | 0,Kz)

T∏
t=1

exp〈logN (xt|At−1u,Q)〉q(xt−1:t),

∝ N (u | 0,Kz)

T∏
t=1

exp〈xTt Q−1At−1u−
1

2
uTAT

t−1Q
−1At−1u〉q(xt−1:t),

∝ exp{
T∑
t=1

〈xTt Q−1At−1〉q(xt−1:t)u

− 1

2
uT

(
K−1

z +

T∑
t=1

〈AT
t−1Q

−1At−1〉q(xt−1)

)
u}. (5.15a)

From this expression we confirm that q∗(u) is indeed a Gaussian distribution
with natural parameters

ηηη1 =

T∑
t=1

〈AT
t−1Q

−1xt〉q(xt−1:t), (5.16a)

ηηη2 = −1

2

(
K−1

z +

T∑
t=1

〈AT
t−1Q

−1At−1〉q(xt−1)

)
. (5.16b)

Therefore, the optimal distribution q∗(u) depends on the sufficient statistics

Ψ1 ,
T∑
t=1

〈KT
t−1,zQ

−1xt〉q(xt−1:t), (5.17a)

Ψ2 ,
T∑
t=1

〈KT
t−1,zQ

−1Kt−1,z〉q(xt−1). (5.17b)

The mean and covariance matrix of q∗(u), denoted as µ and Σ respectively, can
be computed as µ = Σηηη1 and Σ = (−2ηηη2)−1

µ = ΣK−1
z Ψ1 =

(
I + K−1

z Ψ2

)−1
Ψ1, (5.18a)

Σ =
(
K−1

z + K−1
z Ψ2K

−1
z

)−1
. (5.18b)

5.3.2 OPTIMAL VARIATIONAL DISTRIBUTION FOR x

We follow an analogous procedure to find the optimal distribution over the
state trajectory that maximises the evidence lower bound for a fixed q(u). The
Euler-Lagrange equation with respect to the distribution q(x) is

∂

∂q(x)

{
−q(x) log q(x) + q(x0) log p(x0) +

T∑
t=1

q(x)〈Φ(xt−1:t,u)〉q(u)

+

T∑
t=1

q(x) log p(yt|xt)
}

= 0, (5.19)

62 5. GAUSSIAN PROCESS STATE-SPACE MODELS – VARIATIONAL LEARNING

which results in an optimal distribution q∗(x)

0 = − log q∗(x)− 1 + log p(x0) +

T∑
t=1

{
〈Φ(xt−1:t,u)〉q(u) + log p(yt|xt)

}
, (5.20)

which, after exponentiation and using q(u) = N (u|µ,Σ), becomes

q∗(x) ∝ p(x0)

T∏
t=1

p(yt|xt) exp{−1

2
tr
(
Q−1(Bt−1+At−1ΣAT

t−1)
)
}N (xt|At−1µ,Q).

(5.21)
Examining the optimal distribution q∗(x), we can see that it can be interpreted
as the smoothing distribution of an auxiliary parametric state-space model.
This auxiliary model is simpler than a GP-SSM since the latent states factorise
with a Markovian structure. Equation (5.21) can be interpreted as a the joint
distribution of a nonlinear state-space model with a Gaussian state transition
density

p̃(xt | xt−1) = N (xt|At−1µ,Q), (5.22)

and a likelihood augmented with an additional term

p̃(y | x) ∝
T∏
t=1

p(yt|xt) exp{−1

2
tr
(
Q−1(Bt−1 + At−1ΣAT

t−1)
)
}. (5.23)

Recall that At−1 and Bt−1 depend on xt−1.

To gain an intuition about the additional term exp{...}, it is useful to con-
sider the case where there is no uncertainty about u and, therefore, the ad-
ditional term becomes exp{− 1

2 tr
(
Q−1Bt−1

)
}. Bt−1 is the predictive variance

of Gaussian process regression at a test point xt−1 when using the inducing
points and inducing inputs as noiseless training data. Therefore, the predictive
variance is zero if xt−1 has the same value as one of the inducing inputs. The
additional likelihood term in Equation (5.23) becomes larger when the states
are closer to the inducing inputs.

Smoothing in a nonlinear Markovian state-space model such as this aux-
iliary model is a standard problem in the context of time series. There exist
many strategies to find the smoothing distribution (Särkkä, 2013). However,
their performance varies depending on the characteristics of the peculiarities
of the problem. For instance, in a mildly nonlinear system with Gaussian noise,
an extended Kalman smoother can have good performance by making a Gaus-
sian approximation to the smoothing distribution. On the other hand, prob-
lems with severe nonlinearities and/or non-Gaussian likelihoods can lead to
heavily multimodal smoothing distributions that are better represented using
particle methods such as sequential Monte Carlo (SMC) or Particle Markov
Chain Monte Carlo (PMCMC) (Andrieu et al., 2010).

5.4. OPTIMISING THE EVIDENCE LOWER BOUND 63

Algorithm 3 Variational learning of GP-SSMs with particle smoothing and
vanilla gradient descent. Batch mode (i.e. non-SVI) is the particular case where
the mini-batch is the whole dataset.
Require: Observations y1:T . Initial values for θ, ηηη1 and ηηη2. Schedules for ρ and
λ. i = 1.
repeat

yτ :τ ′ ← SAMPLEMINIBATCH(y1:T)
{xτ :τ ′}Ll=1 ← GETSAMPLESOPTIMALQX(yτ :τ ′ ,θ, ηηη1, ηηη2) sample eq. (5.21)
∇θL ← GETTHETAGRADIENT({xτ :τ ′}Ll=1,θ) supp. material
ηηη∗1, ηηη

∗
2 ← GETOPTIMALQU({xτ :τ ′}Ll=1,θ) eq. (5.16) or (5.28)

ηηη1 ← ηηη1 + ρi(ηηη
∗
1 − ηηη1)

ηηη2 ← ηηη2 + ρi(ηηη
∗
2 − ηηη2)

θ ← θ + λi∇θL
i← i+ 1

until ELBO convergence.

5.4 OPTIMISING THE EVIDENCE LOWER BOUND

To learn the model, we maximise the evidence lower bound with respect to the
variational distributions and the hyper-parameters. We employ a procedure
that alternates between sampling from the optimal distribution q∗(x), updating
the natural parameters of q∗(u) and applying gradient ascent in θ.

Algorithm 3 presents a simple gradient ascent strategy with only two learn-
ing rates. The optimisation could also be carried out using more advanced
stochastic optimisation techniques with additional learning rates and strate-
gies to set them, e.g. AdaGrad (Duchi et al., 2011), RMSProp (Hinton, 2012),
Adam (Kingma and Ba, 2015), etc.

As discussed in Section 5.2.3, the inducing inputs z can be considered vari-
ational parameters. Therefore, as far as the optimisation of the lower bound
is concerned, we can bundle the inducing inputs together with the rest of the
model hyper-parameters θ and optimise them jointly.

5.4.1 ALTERNATIVE OPTIMISATION STRATEGY

In an analogous way to (Titsias, 2009), it is possible to plug the optimal q∗(u)

into the lower bound to obtain a version of the lower bound that depends ex-
clusively on q(x) and θ

L̃(q(x),θ) =− KL(q∗(u)‖p(u)) +H(q(x)) + 〈log p(x0)〉q(x0)

+

T∑
t=1

{
〈Φ(xt−1:t,u)〉q∗(u)q(x) + 〈log p(yt|xt)〉q(x)

}
, (5.24)

where q∗(u) = N (u | µ(q(x)),Σ(q(x))) uses the means and covariances in
Equation (5.18) which are a function of q(x).

Finding an explicit expression for the distribution q∗(x) that maximises L̃
would be extremely useful. It would avoid the need to take steps in the natural
parameters of q∗(u) as proposed in Algorithm 3. In an analogous way as in
Section 5.3.2, we proceed to find a stationary point of L̃ with respect to q(x)

64 5. GAUSSIAN PROCESS STATE-SPACE MODELS – VARIATIONAL LEARNING

using the Euler-Lagrange equation. However, now there is an added difficulty
since the term 〈Φ(xt−1:t,u)〉q∗(u) depends on q(x)

0 =
∂

∂q(x)

{
−q(x) log q(x) + q(x0) log p(x0)

+

T∑
t=1

q(x)〈Φ(xt−1:t,u, q(x))〉q∗(u)

+

T∑
t=1

q(x) log p(yt|xt)
}
. (5.25)

Which results in

0 =− log q∗(x)− 1 + log p(x0)

+

T∑
t=1

{
〈Φ(xt−1:t,u, q

∗(x))〉q∗(u)

+ q∗(x)
∂

∂q(x)
〈Φ(xt−1:t,u, q(x))〉q∗(u)

∣∣
q(x)=q∗(x)

+ log p(yt|xt)
}
. (5.26)

Developing this equation further leads to expectations over products of kernel
matrices that may be analytically tractable for some choices of the covariance
function. However, I have so far been unable to solve them.

5.5 MAKING PREDICTIONS

One of the most appealing properties of the variational approach to learning
GP-SSMs is that the approximate predictive distribution of the state transition
function at a test point x∗ can be cheaply computed

p(f∗|x∗,y) =

∫
p(f∗|x∗,x,u) p(x|u,y) p(u|y) dxdu (5.27a)

≈
∫
p(f∗|x∗,u) p(x|u,y) q(u) dxdu (5.27b)

=

∫
p(f∗|x∗,u) q(u) du (5.27c)

= N (f∗|A∗µ,B∗ + A∗ΣA>∗). (5.27d)

This derivation contains two approximations: 1) predictions at new test points
are considered to depend only on the inducing variables, and 2) the posterior
distribution over u is approximated by a variational distribution (Section 5.3.1).

The predictive covariance can be decomposed in two terms. The term B∗

can be interpreted as the variance due to the fact that there are only a finite
number of inducing points. An infinite amount of inducing inputs spread over
the state space would result in B∗ = 0 for any x∗. On the other hand, the term
A∗ΣA>∗ is a consequence of variance in the posterior over the inducing points.
Perfect knowledge of u would result in A∗ΣA>∗ = 0.

5.6. EXTENSIONS 65

After pre-computations, the cost of each prediction is O(M) for the mean
and O(M2) for the variance. This contrasts with the O(TL) and O(T 2L) com-
plexity of approaches based on sampling from the smoothing distribution where
the predictive distribution is approximated with L samples from p(x|y) (Chap-
ter 4). Instead, the variational approach condenses the learning of the latent
function on the inducing points u and does not explicitly need the smoothing
distribution p(x|y) to make predictions.

5.6 EXTENSIONS

5.6.1 STOCHASTIC VARIATIONAL INFERENCE

When applying conventional variational inference to long time series, it is nec-
essary to draw samples of state trajectories from q∗(x) which have the same
length as the time series. This computationally costly operation needs to be
re-run every time that the parameters are updated. Such a strategy is partic-
ularly inefficient at the start of the optimisation process, when the parameters
are far from optimal. In this situation, samples are drawn from q∗(x) using
parameters that misrepresent the system’s dynamics and, as a consequence,
produce poor state trajectories. Stochastic variational inference (SVI) techniques
have been developed to mitigate this problem by using approximate gradi-
ents/updates which can be computed much faster than the conventional ones.
This is achieved by using only a subset of data at each step instead of the full
dataset (Neal and Hinton, 1998; Hoffman et al., 2013). As a result, many steps
in parameter space can be taken in the time that would be required to make
a single step using the full dataset. This enables swift progress in parameter
space by reducing wasted computation in areas that are clearly not optimal.

Stochastic variational inference techniques usually make the assumption
that all data points are independent. This allows for the computation of unbi-
ased estimates of expectations using only subsets of the data selected at ran-
dom from the full data set. Those subsets of data are often known as mini-
batches. In a time series context, data points are not independent and their or-
der is of crucial importance. Therefore, it is necessary to develop a customised
version of SVI.

In our formulation, both q∗(u) and ∂L
∂θ depend on q(x) via sufficient statis-

tics that contain a summation over all elements in the state trajectory. In par-
ticular, these sufficient statistics depend only on marginals involving states at
a single time step q(xt) or at two neighbouring time steps q(xt−1:t). We can
obtain unbiased estimates of the sufficient statistics by using segments of the
sequence that are sampled uniformly at random. Estimates of the optimal pa-
rameters of q∗(u) can be computed using only a segment of the time series of

66 5. GAUSSIAN PROCESS STATE-SPACE MODELS – VARIATIONAL LEARNING

length S spanning from time τ to τ ′

ηηη1 ≈
T

S

τ ′∑
t=τ

〈AT
t−1Q

−1xt〉q(xt−1:t), (5.28a)

ηηη2 ≈ −
1

2

K−1
z +

T

S

τ ′∑
t=τ

〈AT
t−1Q

−1At−1〉q(xt−1)

 . (5.28b)

In order to obtain unbiased estimates, the only requirement is that segments
are sampled in such a way that all terms in the sum from t = 1 to T have the
same probability to appear in the sample.

Although we can obtain unbiased estimates that only involve sums over
a part of the time series, it is still necessary to compute q∗(xτ−1:τ ′). Such an
operation has complexity O(T) because the full observed time series is nec-
essary to obtain the smoothing distribution. That would negate most of the
computational benefit offered by SVI. However, in practice, q∗(xτ−1:τ ′) can
be well approximated by running the smoothing algorithm locally around the
segment τ − 1 : τ . This can be justified by the fact that the smoothing distribu-
tion at a particular time is less affected by measurements that are far into the
past or into the future (Särkkä, 2013). In parallel with our work (Frigola et al.,
2014a), Foti et al. (2014) presented the use of stochastic variational inference
for Hidden Markov Models (HMM). Foti et al. (2014) compute an approxima-
tion to q∗(xτ−1:τ ′) by using observations beyond the edges of the sequence:
yτ−1−l:τ ′+l. They also provide an algorithm to adaptively change l although
they report experimental results showing that l << S is sufficient unless S is
very small.

Finally, we note that our stochastic variational inference algorithm is an
instance of doubly stochastic variational inference (Titsias and Lázaro-Gredilla,
2014). One source of stochasticity originates from the use of mini-batches of
data at each time step. The second source originates from the computation of
expectations with respect to q∗(x) that are approximated using samples from
that distribution.

5.6.2 ONLINE LEARNING

Our variational approach to learn GP-SSMs also leads naturally to an online
learning implementation. This is of particular interest in the context of dynam-
ical systems as it is often the case that data arrives in a sequential manner, e.g. a
robot learning the dynamics of different objects by interacting with them. On-
line learning in a Bayesian setting consists in sequential application of Bayes
rule whereby the posterior after observing data up to time t becomes the prior
at time t + 1 (Opper, 1998; Broderick et al., 2013). In our case, this involves re-
placing the prior p(u) = N (u|0,Kz) by the approximate posterior N (u|µ,Σ)

obtained in the previous step. The expressions for the update of the natural

5.7. ADDITIONAL TOPICS 67

parameters of q∗(u) with a new mini batch yτ :τ ′ are

ηηη′1 = ηηη1 +

τ ′∑
t=τ

〈AT
t−1Q

−1xt〉q(xt−1:t), (5.29a)

ηηη′2 = ηηη2 −
1

2

τ ′∑
t=τ

〈AT
t−1Q

−1At−1〉q(xt−1). (5.29b)

5.7 ADDITIONAL TOPICS

5.7.1 RELATIONSHIP TO REGULARISED RECURRENT NEURAL

NETWORKS

Recurrent Neural Networks (RNNs) are a class of neural networks particularly
suited to modelling sequences that have seen a resurgence in recent years (see
(Sutskever, 2013; LeCun et al., 2015) for recent overviews.) RNNs are dynam-
ical systems that take a sequence as an input and produce another sequence
as the output. There exist many architectures for RNNs. However, recent
trends (see references above) focus on architectures that correspond to para-
metric state-space models such as those presented in Section 2.1. Although
RNNs are not probabilistic models, they are attractive since they are computa-
tionally very efficient and have proved to learn insightful representations from
sequence data.

GP-SSMs are nonparametric models which can model complex state tran-
sition functions. However, as it happens in GP regression and classification,
it is often convenient to resort to approximations and limit the model capac-
ity when dealing with large datasets. Our variational approach to learn sparse
GP-SSMs is a possible approximation. By obtaining a posterior over the finite
dimensional vector of inducing points u, we implicitly define a posterior over
the state transition function. The result is a posterior distribution over transi-
tion functions. Following a result from Section 5.7.2.1, the particular choice of
variational distribution used in this chapter results in an evidence lower bound
that is equivalent to having used the following state transition density

p(ft | xt−1,u) = N (ft | At−1u,Bt−1), (5.30)

with a prior over the inducing points

p(u) = N (u | 0,Kz). (5.31)

The mean of the predictive distribution can be expressed as

At−1u = Kxt−1,zK
−1
z u =

M∑
i=1

k(xt−1, zi) wi, (5.32)

where, for simplicity, we use a vector of weights w , K−1
z u.2 From the equa-

2Translating the prior over inducing inputs to the weights we obtain a prior p(w) =

68 5. GAUSSIAN PROCESS STATE-SPACE MODELS – VARIATIONAL LEARNING

tions above, we can view the mean of the transition density as a neural network
(e.g. a Radial Basis Function) mapping xt−1 to ft withM hidden units, where w

is the vector of hidden to output weights and the kernel function is the hidden
unit transfer function.

5.7.2 VARIATIONAL LEARNING IN RELATED MODELS

In the following, we examine the application of a similar variational evidence
lower bound on models related to the GP-SSM.

5.7.2.1 MARKOVIAN MODEL WITH HETEROSCEDASTIC NOISE

Although not strictly a GP-SSM, it is also interesting to consider a model where
the state transitions are independent of each other given the inducing variables

p(f1:T ,x0:T |u) = p(x0)

T∏
t=1

N
(
ft|A(xt−1)u,B(xt−1)

)
p(xt|ft). (5.33)

This model can be interpreted as a parametric model where A(xt−1)u is a de-
terministic transition function and B(xt−1) is the covariance matrix of an het-
eroscedastic process noise. The model is parameterised by the inducing inputs
z and inducing points u. Note that this process noise is independent between
any two time steps. Maximum likelihood learning and inference in such a
parametric model has been studied in detail in (Turner et al., 2010; McHutchon,
2014).

If we derive an evidence lower bound with using an analogous procedure
to that presented in Section 5.2 using the variational distribution

q(x, f ,u) = q(u)q(x)

T∏
t=1

N
(
ft|A(xt−1)u,B(xt−1)

)
, (5.34)

the lower bound becomes the same as the one obtained in Equation (5.4) for a
GP-SSM.

5.7.2.2 BASIS FUNCTION MODEL

Another interesting nonlinear model can be created using a parametric state
transition function of the form f(x) = φ(x)>w. Where w is a vector of weights
and φ(x) is vector of basis functions evaluated at x. The state transition density
is

p(xt | xt−1,w) = N
(
xt|φ(xt−1)>w,Q

)
. (5.35)

Note that, as opposed to the model in Section 5.7.2.1, these transition dynamics
are not heteroscedastic. Here, the transition from one state to the next is the
consequence of a deterministic nonlinear mapping plus a Gaussian noise of
constant covariance.

N (0,K−1
z).

5.7. ADDITIONAL TOPICS 69

Ghahramani and Roweis (1999) used EM to find maximum likelihood so-
lutions for this nonlinear state-model where φ(x) were Gaussian radial basis
functions.

It is possible to represent a GP-SSM in the form of a basis function model
by approximating the Gaussian process with a truncated basis expansion, e.g.
(Lázaro-Gredilla et al., 2010; Solin and Särkkä, 2014; Svensson et al., 2015).
Those approximations put a Gaussian prior on the weights p(w) = N (0,S).

The joint distribution of a state-space model with such a prior over the tran-
sition dynamics is

p(y,x,w) = p(w)p(x0)

T∏
t=1

p(yt | xt)p(xt | xt−1,w)

= N (w | 0,S) p(x0)

T∏
t=1

p(yt | xt)N
(
xt|φ(xt−1)>w,Q

)
. (5.36)

Using the variational distribution

q(x,w) = q(x)q(w), (5.37)

we can obtain the following lower bound on the evidence

L(q(w), q(x),θ) =〈log
p(w)

q(w)
〉q(w) + 〈log

1

q(x)
〉q(x) + 〈log p(x0)〉q(x0)

+ 〈log

T∏
t=1

p(xt|xt−1,w)〉q(x,w) + 〈log

T∏
t=1

p(yt|xt)〉q(x)

=− KL(q(w)‖p(w)) +H(q(x)) + 〈log p(x0)〉q(x0)

+

T∑
t=1

{
〈N
(
xt|φ(xt−1)>w,Q

)
〉q(x)q(w) + 〈log p(yt|xt)〉q(x)

}
,

(5.38)

which results in the optimal distributions

q∗(w) ∝ p(w)

T∏
t=1

exp〈logN (xt|φ(xt−1)>w,Q)〉q(xt−1:t), (5.39a)

q∗(x) ∝ p(x0)

T∏
t=1

p(yt|xt) exp{−1

2
tr
(
Q−1φ(xt−1)>Σφ(xt−1)>

)
}N (xt|φ(xt−1)>µ,Q),

(5.39b)

where q∗(w) is, conveniently, a Gaussian distribution which we parameterise
with mean µ and covariance matrix Σ. Note how in these expressions the
matrix φ(xt−1)> takes the role of At−1 in the sparse GP-SSM and there is no
contribution equivalent to that of Bt−1.

70 5. GAUSSIAN PROCESS STATE-SPACE MODELS – VARIATIONAL LEARNING

5.7.2.3 GP-SSM WITH TRANSITION AND EMISSION GPS

A state space model having a Gaussian process prior over the state transition
function and the emission/observation function can be represented by

f(x) ∼ GP
(
mf (x), kf (x,x′)

)
, (5.40a)

g(x) ∼ GP
(
mg(x), kg(x,x

′)
)
, (5.40b)

x0 ∼ p(x0) (5.40c)

xt | ft ∼ N (xt | ft,Q), (5.40d)

yt | gt ∼ N (yt | gt,R), (5.40e)

where we have used ft , f(xt−1) and gt , g(xt). If the transition GP is aug-
mented with inducing variables u and the emission GP is augmented with v,
we obtain the following joint distribution of the model

p(y,x, f ,u,g,v) = p(g|x,v) p(x, f |u) p(u) p(v)

T∏
t=1

p(yt|gt), (5.41)

where p(x, f |u) is the same as in the model presented in the paper and p(g|x,v)

is straightforward since it is conditioned on all the states.

We use the following variational distribution over latent variables

q(x, f ,u,g,v) = q(u)q(v)q(x)p(g|x,v)

T∏
t=1

p(ft|f1:t−1,x0:t−1,u). (5.42)

Terms with latent variables inside kernel matrices cancel inside the log

log p(y|θ) ≥ 〈log
p(u)p(v)p(x0)

∏T
t=1 p(yt|gt)p(xt|ft)

q(u)q(v)q(x)
〉q(x,f ,u,g,v)

= −KL(q(u)‖p(u))− KL(q(v)‖p(v)) +H(q(x)) + 〈log p(x0)〉q(x)

+

T∑
t=1

{
〈〈log p(xt|ft)〉p(ft|xt−1,u)〉q(x)q(u)

+ 〈〈log p(yt|gt)〉p(gt|xt,v)〉q(x)q(v)

}
.

The optimal distribution q∗(u) is the same as in Equation (5.14) and the op-
timal variational distribution of the emission inducing variables is a Gaussian
distribution

q∗(v) ∝ p(v)

T∏
t=1

exp{〈logN (yt|Ct v,R)〉q(xt)} (5.43)

where

Ct = Kt,vK−1
v ,

Dt = Kt,t −Kt,vK−1
v Kv,t.

5.7. ADDITIONAL TOPICS 71

The optimal variational distribution of the state trajectory is

q∗(x) ∝ p(x0)

T∏
t=1

exp{−1

2
tr(Q−1(Bt−1 + At−1ΣAt−1

T))− 1

2
tr(R−1(Dt + CtΛCt

T))}

N (xt|At−1µ,Q)N (yt|Ctν,R), (5.44)

where we have used q(v) = N (ν,Λ).

5.7.3 ARBITRARY MEAN FUNCTION CASE

To simplify the interpretation of the equations, the rest of the chapter has been
written for GP priors with a zero mean function. This section presents the ex-
pressions for the arbitrary mean function case. When a rough model of the dy-
namics is available it can be used as a mean function of the GP prior. This helps
in obtaining meaningful distributions over the state trajectories from the first
learning iterations. Recall that we use the shorthand notation mx , mf (x).

EVIDENCE LOWER BOUND The evidence lower bound has the same expres-
sion as for the zero-mean case except for the terms:

p(u) = N (u |mz,Kz), (5.45a)

Φ(xt−1:t,u) = −1

2
tr(Q−1Bt−1) + logN (xt |mxt−1 + At−1u,Q), (5.45b)

The ELBO becomes

L(q(u), q(x),θ) =− KL(q(u)‖p(u)) +H(q(x)) + 〈log p(x0)〉q(x0)

+

T∑
t=1

{
− 1

2
〈tr(Q−1(Bt−1 + At−1ΣA>t−1))〉q(xt−1)

+ 〈logN (xt |mxt−1 + At−1µ,Q)〉q(xt−1:t)

+ 〈log p(yt | xt)〉q(xt)

}
. (5.46)

OPTIMAL VARIATIONAL DISTRIBUTION FOR u The natural parameters for
the (Gaussian) optimal distribution q∗(u) are

ηηη1 =

T∑
t=1

〈(xt −mxt−1
)TQ−1At−1〉q(xt−1:t) + m>z K−1

z , (5.47a)

ηηη2 = −1

2

(
K−1

z +

T∑
t=1

〈AT
t−1Q

−1At−1〉q(xt−1)

)
. (5.47b)

OPTIMAL VARIATIONAL DISTRIBUTION FOR x

q∗(x) ∝ p(x0)

T∏
t=1

p(yt|xt) exp{−1

2
tr
(
Q−1(Bt−1+At−1ΣAT

t−1)
)
}N (xt|mxt−1

+At−1µ,Q).

(5.48)

72 5. GAUSSIAN PROCESS STATE-SPACE MODELS – VARIATIONAL LEARNING

PREDICTIVE DISTRIBUTION

p(f∗|x∗,y) ≈ N (f∗|mx∗ + A∗µ,B∗ + A∗ΣA>∗). (5.49)

5.8 EXPERIMENTS

This section showcases the ability of variational GP-SSMs to perform approxi-
mate Bayesian learning of nonlinear dynamical systems. In particular, we aim
to demonstrate: 1) the ability to learn the inherent nonlinear dynamics of a
system, 2) the application in cases where the latent states have higher dimen-
sionality than the observations, and 3) the use of non-Gaussian likelihoods.

5.8.1 1D NONLINEAR SYSTEM

We apply our variational learning procedure presented above to the one-dimen-
sional nonlinear system described by p(xt+1|xt) = N (f(xt), 1) and p(yt|xt) =

N (xt, 1) where the transition function is xt + 1 if x < 4 and −4xt + 21 if x ≥ 4.
Its pronounced kink makes it challenging to learn. Our goal is to find a pos-
terior distribution over this function using a GP-SSM with Matérn covariance
function. To solve the expectations with respect to the approximate smooth-
ing distribution q(x) we use a bootstrap particle fixed-lag smoother with 1000
particles and a lag of 10.

In Table 5.1, we compare our method (Variational GP-SSM) against the PM-
CMC sampling procedure from (Frigola et al., 2013) taking 100 samples and
10 burn in samples. As in (Frigola et al., 2013), the sampling exhibited very
good mixing with 20 particles. We also compare to an auto-regressive model
based on Gaussian process regression (Quiñonero-Candela et al., 2003) of or-
der 5 with Matérn ARD covariance function with and without FITC approxi-
mation. Finally, we use a linear subspace identification method (N4SID, (Over-
schee and Moor, 1996)) as a baseline for comparison. The PMCMC training
offers the best test performance from all methods using 500 training points at
the cost of substantial train and test time. However, if more data is available
(T = 104) the stochastic variational inference procedure can be very attractive
since it improves test performance while having a test time that is independent
of the training set size. The reported SVI performance has been obtained with
mini-batches of 100 time-steps.

5.8.2 NEURAL SPIKE TRAIN RECORDINGS

We now turn to the use of SSMs to learn a simple model of neural activity in
rats’ hippocampus. We use data in neuron cluster 1 (the most active) from ex-
periment ec013.717 in (Mizuseki et al., 2013). In some regions of the time series,
the action potential spikes show a clear pattern where periods of rapid spiking
are followed by periods of very little spiking. We wish to model this behaviour
as an autonomous nonlinear dynamical system (i.e. one not driven by exter-

5.8. EXPERIMENTS 73

−10 −5 0 5

−10

−5

0

5

x
t−1

f t &
 u

Figure 5.1: Posterior distribution over latent state transition function (green: ground truth,
blue: posterior mean, red: mean ±1 standard deviation).

Test RMSE log p(xtest
t+1|xtest

t ,ytr
0:T) Train time Test time

Variational GP-SSM 1.15 -1.61 2.14 min 0.14 s
Var. GP-SSM (SVI, T = 104) 1.07 -1.47 4.12 min 0.14 s
PMCMC GP-SSM 1.12 -1.57 547 min* 421 s
GP-NARX 1.46 -1.90 0.22 min 3.85 s
GP-NARX + FITC 1.47 -1.90 0.17 min 0.23 s
Linear (N4SID) 2.35 -2.30 0.01 min 0.11 s

Table 5.1: Experimental evaluation of 1D nonlinear system. Unless otherwise stated, training
times are reported for a dataset with T = 500 and test times are given for a test set with 105

data points. All pre-computations independent on test data are performed before timing the “test
time”. Predictive log likelihoods are the average over the full test set. * The PMCMC code used
for these experiments did not use fast updates-downdates of the Cholesky factors during training
(Section 4.4.2). This does not affect test times.

940 940.5 941

10

20

30

40

time [s]

sp
ik

e
co

un
ts

940 940.5 941

0

time [s]

st
at

es

0 0.5 1

10

20

30

40

prediction time [s]

sp
ik

e
co

un
ts

0 0.5 1

0

prediction time [s]

st
at

es

Figure 5.2: From left to right: 1) part of the observed spike count data, 2) sample from the
corresponding smoothing distribution, 3) predictive distribution of spike counts obtained by
simulating the posterior dynamical from an initial state, and 4) corresponding latent states.

nal inputs). Many parametric models of nonlinear neuron dynamics have been
proposed (Izhikevich, 2000) but our goal here is to learn a model from data
without using any biological insight. We use a GP-SSM with a structure such
that it is the discrete-time analog of a second order nonlinear ordinary differ-
ential equation: two states one of which is the derivative of the other. The
observations are spike counts in temporal bins of 0.01 second width. We use a
Poisson likelihood relating the spike counts to the second latent state

yt|xt ∼ Poisson(exp(αx
(2)
t + β)).

We find a posterior distribution for the state transition function using our
variational GP-SSM approach. Smoothing is done with a fixed-lag particle
smoother and training until convergence takes approximately 50 iterations of
Algorithm 3. Figure 5.2 shows a part of the raw data together with an approxi-

74 5. GAUSSIAN PROCESS STATE-SPACE MODELS – VARIATIONAL LEARNING

0

x(1)

x(2
)

x(1)

x(2
)

0

x(1)

x(2
)

0

x(1)

x(2
)

0

Figure 5.3: Contour plots of the state transition function x
(2)
t+1 = f(x

(1)
t ,x

(2)
t), and trajectories

in state space. Left: mean posterior function and trajectory from smoothing distribution. Other
three panels: transition functions sampled from the posterior and trajectories simulated condi-
tioned on the corresponding sample. Those simulated trajectories start inside the limit cycle and
are naturally attracted towards it. Note how function samples are very similar in the region of
the limit cycle.

mate sample from the smoothing distribution during the same time interval. In
addition, we show the distribution over predictions made by chaining 1-step-
ahead predictions. To make those predictions we have switched off process
noise (Q = 0) to show more clearly the effect of uncertainty in the state tran-
sition function. Note how the frequency of roughly 6 Hz present in the data is
well captured. Figure 5.3 shows how the limit cycle corresponding to a nonlin-
ear dynamical system has been captured (see caption for details).

Chapter 6

Filtered Auto-Regressive
Gaussian Process Models

This chapter presents a novel approach to learning nonlinear models of time
series which integrates an automatic data preprocessing step with the train-
ing of a nonlinear auto-regressive model (Frigola and Rasmussen, 2013). The
resulting algorithm is extremely simple to implement and can quickly learn a
posterior over nonlinear dynamical systems from long time series data. This
posterior can be used for prediction, extrapolation and other related tasks. For
instance, one could learn a model of a nonlinear dynamical system from in-
put/output data and use this model to design a feedback controller to stabilise
the system.

6.1 INTRODUCTION

Gaussian Process State-Space Models are very general and flexible models of
nonlinear dynamical systems. One of their main strengths is their ability to
model dynamics in an abstract state space that is different to the observation
space. However, this poses the challenge of needing to infer the posterior
distribution over the state trajectories given the observed time series, i.e. the
smoothing distribution. This operation can be performed very efficiently with
a Kalman smoother when the state-space model is linear and Gaussian. How-
ever, for general nonlinear and/or non-Gaussian models, one needs to resort to
approximations such as the Extended Kalman Smoother, the Particle Smoother
or Particle MCMC. Depending on the particular characteristics of the problem
at hand, a given method can perform brilliantly or fail miserably.

In this section we present a method based on an auto-regressive nonlinear
model (Section 2.3.6) where the difficult task of state smoothing is sidestepped.
This leads to learning with a simple algorithm, less computational cost and
more robustness due to avoiding the use of a state smoother.

However, auto-regressive models are less general than state-space models.
They are not able to separate between process noise (e.g. turbulence changing

75

76 6. FILTERED AUTO-REGRESSIVE GAUSSIAN PROCESS MODELS

the actual trajectory of an aircraft) from observation noise (e.g. random errors
in the measurement of aircraft position.) In auto-regressive models, all noise
can, in principle, modify the future trajectory of the system. Whereas in state-
space models the state trajectory is independent of observation noise.

6.1.1 END-TO-END MACHINE LEARNING

The algorithm presented in this chapter recognises the need to take into ac-
count observation noise. However, we use an auto-regressive model that has
no concept of observation noise. The conventional approach in system identi-
fication is to manually preprocess the data to remove observation noise before
learning the model (Ljung, 1999). This can be attempted, for instance, by apply-
ing a low-pass filter on time-domain signals to remove high-frequency noise.
Instead, our approach is to automatically tune a parameterised preprocessing
step simultaneously with the learning of the nonlinear auto-regressive model.
For instance, if we choose to preprocess the data with a low-pass filter, the
bandwidth of the filter can be tuned while learning the model.

According to Blocker and Meng (2013), “decisions made in preprocessing
constrain all later analyses and are typically irreversible”. Our approach is
to integrate preprocessing with model learning in order to perform the right
amount of preprocessing to obtain good predictive performance.

6.1.2 ALGORITHMIC WEAKENING

Our approach can also be interpreted within an algorithmic weakening frame-
work (Jordan, 2013). Algorithmic weakening refers to having a hierarchy of
models with different computational complexities and, as data accrue, a sim-
pler model is used. Jordan (2013) states that for a given quality of inference
“it may be possible to save on computation because of the growth of statistical
power as problem instances grow in size.” In other words, the fact that more
data are available compensates for the use of simpler models and leads to less
computation for the same inferential quality.

Although state-space models generalise auto-regressive models, they are
generally harder to learn due to the need to solve a filtering or smoothing
problem as an intermediate step. Auto-regressive models where data has been
preprocessed to remove as much observation noise as possible can be seen as
a step down from a hierarchy of models: they are not as general but they are
typically faster to train. As a consequence, for large datasets, they can be faster
to reach a certain level of inferential quality.

Jordan (2013) does not touch the issues of ease of use and robustness of
algorithms. These are also important practical factors to take into account. Un-
fortunately, algorithms for nonlinear filtering and smoothing need to be tuned
to each particular application if computational efficiency is important. The fact
that no state inference is necessary in auto-regressive models leads to simpler
algorithms that can be more easily used by non-experts.

6.2. THE GP-FNARX MODEL 77

2.2534 2.2536 2.2538 2.254 2.2542 2.2544 2.2546 2.2548 2.255 2.2552

x 105

−3

−2

−1

0

1

2

3

t

y

Figure 6.1: An original signal (red) filtered with a low-pass filter using different settings for the
cut-off frequency (blue). The filter is a zero-phase fourth order Butterworth low-pass filter.

6.2 THE GP-FNARX MODEL

In this section, we describe the GP-FNARX model for nonlinear system iden-
tification based on a nonlinear auto-regressive exogenous (NARX) model with
filtered regressors (F) where the nonlinear regression problem is tackled using
sparse Gaussian processes (GP). The approach integrates preprocessing with
model learning into a fully automated procedure that yields a posterior over
dynamical systems. Training is performed by simultaneously maximising the
marginal likelihood of the probabilistic regression model with respect to the pre-
processing parameters and the GP hyper-parameters.

Auto-regressive models with exogenous inputs attempt to predict the present
output by considering it a function of past inputs and outputs:

yt = f(yt−1,yt−2, ...,ut−1, ...) + δt. (6.1)

The identification problem is then posed as a regression task. In other words,
we want to infer the function y = f(x) from a finite number of examples
{yi,xi}, where xi = (yi−1,yi−2, ...,ui−1, ...). In our approach, we place a GP
prior on the function f(x) and use sparse GP regression techniques to learn it
from observed data.

If the input and output signals to the dynamical system are noisy, we face
an errors-in-variables problem since the regressors x are noisy. Noise in the
regressors makes the regression problem particularly hard (McHutchon and
Rasmussen, 2011; Damianou and Lawrence, 2015). This is one of the reasons
why, in practical system identification applications, input signals are typically
preprocessed before learning a model of the system dynamics. For instance,
one can carefully low-pass filter the signals to remove high-frequency noise.
In Fig. 6.1, we show the results of filtering an originally noisy signal with a
zero-phase fourth order Butterworth low-pass filter. A signal with T = 106 can
be filtered in only 0.05 seconds using Matlab on a mid-range desktop. This is
orders of magnitude faster than approximate smoothing in a nonlinear state-
space model.

We will consider any data preprocessing function applied to the input and

78 6. FILTERED AUTO-REGRESSIVE GAUSSIAN PROCESS MODELS

output signals
(ŷ, û) = h(y,u,ωωω) (6.2)

where the preprocessed signals vary smoothly with respect to a vector of pre-
processing parameters ωωω. This smoothness condition is imposed in order to
obtain a probabilistic model with a differentiable marginal likelihood with re-
spect to ωωω.

We can rephrase the auto-regressive model in terms of the preprocessed
regressors:

yt = f(ŷt−1, ŷt−2, ..., ût−1, ...). (6.3)

Note that the left hand side term is not preprocessed.

6.2.1 CHOICE OF PREPROCESSING AND COVARIANCE FUNCTIONS

6.2.1.1 CAUSAL PREPROCESSING

If trained GP-FNARX models are intended to make online predictions, it is
convenient to use causal preprocessing. Causal preprocessing consists in the
use of a preprocessing algorithm whose output depends on past and current
inputs but not on future inputs. For example, a conventional moving average
filter is a causal filter but the zero-phase filter in Figure 6.1 is non-causal.

Using a causal preprocessing stage mimics the kind of filtering that can be
realistically performed online. Therefore, the preprocessing parameters tuned
during training can be used on exactly the same filtering algorithm when the
model is deployed.

6.2.1.2 COVARIANCE FUNCTION

An alternative to causal preprocessing on the full input and output signals is to
embed a filter in the covariance function of the Gaussian process. For example,
a kernel could incorporate a moving average filter

k(ya:b,y
′
a:b) = k̃(

b∑
i=a

yi,

b∑
i=a

y′i) (6.4)

or more sophisticated parameterised preprocessing

k(ya:b,y
′
a:b) = k̃

(
h(ya:b,ωωω), h(y′a:b,ωωω)

)
. (6.5)

In such kernels, preprocessing can be interpreted as an explicit intermediate
featurisation of the GP index set. In fact, h(ya:b,ωωω) does not need to have the
same dimensionality as ya:b. For example, it could be a filtered version of ya:b

sub-sampled at a few locations.

This formalisation of preprocessing converts the problem of tuning prepro-
cessing parameters into a kernel search problem. (See (Duvenaud, 2014) for
an excellent tutorial on expressing structure with kernels and an overview of

6.3. OPTIMISATION OF THE MARGINAL LIKELIHOOD 79

kernel search.) In our Gaussian process framework, kernel search can be per-
formed via maximisation of the marginal likelihood.

Note that, within a kernel, it is feasible to relax the requirement for a causal
filter even when predictions will be made online. For instance, consider a linear
digital filter

k(ya:b,y
′
a:b) = k̃

(
Hya:b,Hy′a:b

)
, (6.6)

where H is the linear digital filter matrix. A filtering and subsampling strat-
egy could be implemented using a wide and short matrix. There is no need
for this filter to be causal within the a : b range, therefore H does not require
a triangular structure. H could be relatively large, e.g. 4 × 100, but param-
eterised very lightly, e.g. with only a scalar bandwidth parameter. It would
also be possible to start training with such a light parameterisation and once
a rough bandwidth has been found switch to optimisation of all the elements
in H. This would let the algorithm “discover” the best combination of filter
type, subsampling strategy and hyper-parameters for the base kernel k̃(·, ·). A
similar filtering strategy could be implemented for the mean function of the
GP.

6.3 OPTIMISATION OF THE MARGINAL LIKELIHOOD

In Section 2.2.1 we described how the marginal likelihood provides a very
powerful metric to perform model selection due to its ability to automatically
trade off model fit and model complexity in a principled manner. Our goal here
will be to maximise the marginal likelihood of the Gaussian process regression
model with respect to the signal preprocessing parameters and also, simulta-
neously, with respect to the hyper-parameters of the GP. For convenience, we
introduce ψψψ , {ωωω,θθθ} grouping the two kinds of parameters.

We will employ hill-climbing optimisation to maximise the marginal like-
lihood (or, equivalently, its logarithm). For notational simplicity, we group all
the preprocessed regressors into a matrix X̂ = X̂(y,u,ωωω). The log marginal
likelihood becomes

log p(y|X̂(ωωω), θθθ). (6.7)

Its derivatives with respect to the GP hyper-parameters

∂

∂θθθj
log p(y|X̂(ωωω), θθθ), (6.8)

are straightforward since we typically choose differentiable covariance func-
tions. However, the derivatives with respect to any of the preprocessing pa-
rameters

∂

∂ωωωk
log p(y|X̂(ωωω), θθθ) (6.9)

can be more difficult to compute since derivatives with respect to the kernel
matrix also need to be computed. We can write the derivative of a single ele-

80 6. FILTERED AUTO-REGRESSIVE GAUSSIAN PROCESS MODELS

Algorithm 4 High-level pseudo-code for the GP-FNARX algorithm.
Inputs: I = {output signals y1:T , input signals u1:T , model order η}

1. ψψψ0 ← INITIALGUESS(I)

2. ψψψOpt ←MAXIMISEMARGLIKELIHOOD(ψψψ0, I)

3. Predictive model← PRECOMPUTEPREDICTOR(ψOpt, I)

ment of the covariance matrix as

∂Kij

∂ωωωk
=
∂k(x̂i, x̂j)

∂ωωωk
=

∂k

∂x̂i

∂x̂i
∂ωωωk

+
∂k

∂x̂j

∂x̂j
∂ωωωk

(6.10)

where the derivatives with respect to the regressors are straightforward to com-
pute when using smooth covariance functions. However, the derivatives of the
regressors with respect to the preprocessing parameters may be hard to com-
pute. In any case, if the preprocessing function is smooth, the derivatives ∂x̂

∂ωωωk

can be approximated numerically by finite differences at the cost of one extra
evaluation of the preprocessing function per dimension of ωωω.

6.4 SPARSE GPS FOR COMPUTATIONAL SPEED

Computing the marginal likelihood for datasets with more than a few thou-
sand points becomes computationally expensive. In such settings we can use
sparse Gaussian processes for regression such as FITC (Snelson and Ghahra-
mani, 2006) or variational sparse GPs (Titsias, 2009). Their computational com-
plexity during training is O(M2T) instead of the O(T 3) of the full GP. After
all possible pre-computations, the computational complexity of making pre-
dictions with sparse GPs is O(M) for the mean of the predictive distribution
and O(M2) for its variance. The computational efficiency comes from having
condensed the original dataset with roughly T points into a smaller set of M
inducing points.

6.5 ALGORITHM

In Algorithm 4 we present a high-level overview of the GP-FNARX algorithm.
The first step consists in providing an initial guess for the unknown hyper-
parameters. We have found that, in the absence of any problem-specific knowl-
edge that could guide the initial guess, a successful data-based heuristic is to
run a few steps of optimisation of the marginal likelihood with respect to the
GP hyper-parameters followed by a few steps of optimisation with respect to
the preprocessing parameters. By running these two steps, the algorithm can
rapidly hone in the right order of magnitude for the unknown parameters.

The second step consists in a straightforward joint optimisation of the GP
hyper-parameters and the preprocessing parameters. This step can be per-

6.6. EXPERIMENTS 81

formed by either using a subset of the data with a conventional GP or, prefer-
ably, on the full dataset using a sparse GP (Quiñonero-Candela and Rasmussen,
2005; Titsias, 2009).

In the third and final step, any O(T) operation in the sparse GP predictor
can be pre-computed in order to obtain a model that is able to provide predic-
tive means in O(M) and predictive variances in O(M2).

The choice of the order of the auto-regressive model is not critical for the
performance of the algorithm provided that two conditions are met: i) the or-
der is chosen to be higher than the optimal order and ii) the automatic rele-
vance determination (ARD) covariance function is chosen for the GP. This is
due to the fact that the Bayesian Occam’s razor embodied by the marginal like-
lihood is able to automatically disable regressors that are irrelevant to the task
at hand. In our experiments we verified that adding hundreds of regressors on
a problem of low order did not cause any overfitting and only represented a
computation time penalty.

6.6 EXPERIMENTS

In this section we present an experimental evaluation of the proposed system
identification method. We have used data from two nonlinear system identifi-
cation benchmarks based on electric circuits: i) the Silverbox benchmark orig-
inating from the 2004 IFAC Symposium on Nonlinear Control Systems (NOL-
COS) and ii) the SYSID09 Wiener-Hammerstein system identification bench-
mark (Schoukens et al., 2009) which has been the object of a special section in
the November 2012 issue of the “Control Engineering Practice” journal (Hjal-
marsson et al., 2012).

Both datasets have >105 data points and are corrupted by a very small
amount of noise. For instance, the authors of the Wiener-Hammerstein dataset
estimate its signal to noise ratio to be of 70 dB. Since we are attempting to
demonstrate the ability of our method to cope with measurement noise, we
will inject different amounts of synthetic i.i.d. Gaussian noise to the output
signals to make the identification task more challenging. Being able to have
original signals with little noise will be convenient to test the quality of the
resulting models.

We have compared GP-FNARX against other off-the-shelf alternatives. In
particular, we use several NARX models available in the Matlab System Iden-
tification toolbox (Ljung, 2012).

Following this spirit, we have avoided any tuning of our method to the par-
ticular benchmarks presented in this section. For instance, using knowledge
about the underlying system of the Silverbox benchmark, we obtained better
performance by adding cubic regressors into our NARX model. However, we
have not used those custom regressors when reporting the performance of our
model.

Regarding the preprocessing step, we have chosen a simple zero-phase sec-

82 6. FILTERED AUTO-REGRESSIVE GAUSSIAN PROCESS MODELS

0 10 20 30 40 50 60 70 80

10−4

10−3

10−2

SNR [dB]

R
M

SE
 [V

]

Silverbox benchmark

GP−FNARX (SoD), 23±2
GP−FNARX (FITC), 23±2
GP−NARX (SoD), 14±1
GP−NARX (FITC), 14±1
wavenet nlarx, 5±1
sigmoidnet nlarx, 83±9
treepartition nlarx, 7±0
wavenet nlarx (filt), 6±2
sigmoidnet nlarx (filt), 74±11
treepartition nlarx (filt), 7±0

0 10 20 30 40 50 60 70 80

10−3

10−2

10−1

SNR [dB]

R
M

SE
 [V

]

Wiener−Hammerstein benchmark

GP−FNARX (SoD), 25±2
GP−FNARX (FITC), 25±2
GP−NARX (SoD), 16±1
GP−NARX (FITC), 16±1
wavenet nlarx, 7±3
sigmoidnet nlarx, 85±12
treepartition nlarx, 8±0
wavenet nlarx (filt), 5±1
sigmoidnet nlarx (filt), 85±8
treepartition nlarx (filt), 8±0

0 10 20 30 40 50 60 70 80

10−4

10−3

10−2

SNR [dB]

R
M

SE
 [V

]

Silverbox benchmark

GP−FNARX (SoD), 23±2
GP−FNARX (FITC), 23±2
GP−NARX (SoD), 14±1
GP−NARX (FITC), 14±1
wavenet nlarx, 5±1
sigmoidnet nlarx, 83±9
treepartition nlarx, 7±0
wavenet nlarx (filt), 6±2
sigmoidnet nlarx (filt), 74±11
treepartition nlarx (filt), 7±0

0 10 20 30 40 50 60 70 80

10−3

10−2

10−1

SNR [dB]

R
M

SE
 [V

]

Wiener−Hammerstein benchmark

GP−FNARX (SoD), 25±2
GP−FNARX (FITC), 25±2
GP−NARX (SoD), 16±1
GP−NARX (FITC), 16±1
wavenet nlarx, 7±3
sigmoidnet nlarx, 85±12
treepartition nlarx, 8±0
wavenet nlarx (filt), 5±1
sigmoidnet nlarx (filt), 85±8
treepartition nlarx (filt), 8±0

Figure 6.2: Root mean squared prediction error on the test sets as a function of the signal to
noise ratio in the output signal. The mean computation time and standard deviation for each
method are displayed in the legend (in seconds). Experiments are repeated 10 times, the marker
is positioned at the median value and error-bars indicate the 10-90 percentile interval.

6.6. EXPERIMENTS 83

ond order Butterworth low-pass filter. In this case, the filter parameter ωωω rep-
resents the cut-off frequency of the filter.

In Figure 6.2 we have plotted the prediction errors on both benchmarks for
a number of different models and signal-to-(synthetic)-noise ratios. We have
tested the following models:

• GP-FNARX (SoD): the model presented in this paper using a subset of 512
randomly chosen points (subset of data approximation, SoD (Rasmussen
and Williams, 2006)).

• GP-FNARX (FITC): the model presented in this paper using a FITC sparse
GP (Quiñonero-Candela and Rasmussen, 2005) with M = 512 inducing
points chosen at random.

• GP-NARX (SoD): same as GP-FNARX (SoD) but with no pre-filtering of the
signals.

• GP-NARX (FITC): same as GP-FNARX (FITC) but with no pre-filtering of the
signals.

• * nlarx: 3 different NARX models implemented in the Matlab System
Identification toolbox (Ljung, 2012). Default options. No pre-filtering
of the signals.

• * nlarx (filt): same as * nlarx but using the pre-filtering parameters taken
from GP-FNARX (FITC) (the computation time for computing those param-
eters is not taken included in the reported figure).

All models have order 10 for the inputs and the outputs.
We observe that the GP-FNARX method with a FITC sparse GP provides

the lowest error for all noise levels in both benchmarks. Overall, these re-
sults allow us to be optimistic with regards to the prediction capabilities of
GP-FNARX models and validate the use of the marginal likelihood as a crite-
rion for model selection in the context of automated preprocessing of the data.

The legend of Figure 6.2 reports the computation times of the experiments
when performed on a machine with a 2008 Intel Core i7-920 processor at 2.67
GHz. Although the training time of the GP-FNARX model is higher than the
wavenet and treepartition models, it is significantly faster than sigmoidnet yet it
provides a lower prediction error.

GP models have a one degree of freedom knob which can be used to trade
off accuracy with speed: the number of data points used for SoD or the number
of inducing points in a sparse GP method such as FITC.

84 6. FILTERED AUTO-REGRESSIVE GAUSSIAN PROCESS MODELS

Chapter 7

Conclusions

7.1 CONTRIBUTIONS

In this thesis, we have presented a number of contributions towards practical
Bayesian learning of nonlinear time series models. Solutions have been offered
to attempt to achieve a number of often conflicting goals:

Bayesian learning: All the work presented in this thesis has aimed at obtain-
ing posteriors over nonlinear dynamical systems. These posteriors model
the uncertainty about what the actual dynamical systems are given the
particular time series used for training. In some settings, quantifying pre-
dictive uncertainty is useful to improve decisions made with the model.
For example, our methods can be used as one of the building blocks
within Bayesian reinforcement learning or for the design of adaptive-
robust feedback controllers.

Nonparametric modelling: We presented learning algorithms for models of
time series based on Gaussian processes. The sampling methods intro-
duced in Chapter 4 and the GP-FNARX auto-regressive model in Chap-
ter 6 are able to learn fully nonparametric models of time series which
combine very large model capacity while avoiding the risk of overfitting.

Fast training: Throughout the thesis we have provided sparse versions for all
models. Models based on sparse Gaussian processes inherit most of the
properties of their fully nonparametric counterparts whilst reducing the
computational complexity. In particular, they offer a convenient knob to
trade off model capacity and computation time. We also presented an
orthogonal approach to reduce training time for large datasets based on
mini-batches (Chapter 5). Learning from mini-batches avoids having to
process the full dataset at each iteration which can result in much faster
optimisation when the time series are long.

Fast prediction: Monte Carlo methods from Chapter 4 can capture the full
nonparametric expressivity of GP-SSMs but are slow at test time. The
variational learning approach in Chapter 5 was designed to avoid this
problem by approximating the posterior over nonlinear dynamical sys-

85

86 7. CONCLUSIONS

tems with a representation whose size is independent on the length of
the time series.

Ease of use: The filtered nonlinear auto-regressive algorithm introduced in Chap-
ter 6 provides a simple, robust and fast learning method that makes it
well suited to application by non-experts. Its main advantage is that it
avoids the expensive (and potentially difficult to tune) smoothing step
that is a key part of learning nonlinear state-space models.

Most of the work in this thesis has revolved around Gaussian Process State-
Space Models. We started by providing a literature review that unifies previous
work related to the model. We then derived a new formulation for the model
that enables straightforward sampling from the prior. The insights offered by
the new formulation have led us to the creation of new Bayesian learning algo-
rithms for the GP-SSM based on Particle MCMC and variational inference.

7.2 FUTURE WORK

The models presented in this dissertation are probabilistic in nature. They rep-
resent an idealisation of the complex system that generated the data. By using
inverse probability it is possible to go from observed data to a posterior over
the unobserved variables of interest. This posterior captures uncertainty which
can be propagated to future predictions in a principled manner.

However, many recent successes in sequence modelling have stemmed from
models that are essentially non-probabilistic1 (Graves et al., 2013; Sutskever,
2013; LeCun et al., 2015). Although we have advocated for the use of gener-
ative probabilistic models, we should ask ourselves: what are the characteris-
tics of non-probabilistic models such as Recurrent Neural Networks that allow
them to learn such insightful representations of sequences? A tentative answer
could be that their success is based on the combination of large datasets and
very well engineered training algorithms.

Modelling uncertainty in probabilistic learning algorithms imposes an extra
computational burden that their non-probabilistic counterparts do not have to
bear. An interesting avenue of future work consists in taking the insights and
techniques that have led to successful non-probabilistic methods and to apply
them in the context of learning probabilistic generative models. A relatively
straightforward way to achieve this is by first training computationally effi-
cient but non-probabilistic models of time series and subsequently use them
as an initialisation for probabilistic learning algorithms such as the variational
GP-SSM in Chapter 5. An interesting alternative to this approach consists in
reinterpreting successful algorithms for non-probabilistic models in ways that
allow them to capture model uncertainty, see for instance (Gal and Ghahra-
mani, 2015). This would capitalise on the heavy engineering already done for
some non-probabilistic models and allow us to move towards the ultimate goal
of providing uncertainty estimates for any prediction.

1In the sense that they do not model uncertainty in the parameters and states of the model.

Appendix A

Approximate Bayesian
Inference

In this appendix we provide an overview of the two main learning algorithms
that are used in this thesis to learn Gaussian Process State-Space Models.

A.1 PARTICLE MARKOV CHAIN MONTE CARLO

Markov Chain Monte Carlo (MCMC) methods are popular in Bayesian learn-
ing because they allow approximate learning in intractable models. They op-
erate by simulating a Markov chain which admits the target distribution as its
stationary distribution. If the target distribution is the posterior, samples ob-
tained via MCMC can be treated as samples from the posterior distribution
(with some caveats, see for example (Bishop, 2006)).

Particle MCMC (Andrieu et al., 2010) is a recent variant of MCMC that
has proven to be particularly suited to sample from high-dimensional distri-
butions with high correlations. From the various Particle MCMC algorithms
introduced in (Andrieu et al., 2010), we use the Particle Gibbs algorithm. Parti-
cle Gibbs can be considered a Gibbs sampler that relies on a modified particle
filter which is conditioned on a reference trajectory.

A.1.1 PARTICLE GIBBS WITH ANCESTOR SAMPLING

We now introduce the detailed algorithm for Particle Gibbs with Ancestor Sam-
pling (PGAS, Algorithm 5, Lindsten et al. (2014)). PGAS builds on Particle
Gibbs by adding an additional sampling step that mitigates the effects of path
degeneracy. This improves mixing and allows the use of a small number of
particles (Lindsten et al., 2014).

To sample the state trajectory, PGAS makes use of a Sequential Monte Carlo-
like procedure referred to as the Conditional Particle Filter with Ancestor Sam-
pling (CPF-AS, Algorithm 6). This approach is particularly well suited to non-
Markovian latent variable models, as it relies only on a forward recursion

87

88 A. APPROXIMATE BAYESIAN INFERENCE

Algorithm 5 Particle Gibbs with ancestor sampling (PGAS)

Goal: obtain samples from p(θ,x0:T | y1:T)

1. Set θ[0] and x0:T [0] arbitrarily.

2. For ` ≥ 1 do

(a) Draw θ[`] conditionally on x0:T [`− 1] and y1:T .
(b) Run CPF-AS (see Algorithm 6) targeting p(x0:T | θ[`],y1:T), condi-

tionally on x0:T [`− 1].
(c) Sample k with P(k = i) = wiT and set x0:T [`] = xk0:T .

3. end

(Lindsten et al., 2014). The difference between a standard particle filter (PF)
and the CPF-AS is that, for the latter, one particle at each time step is specified
a priori. These particles will be named reference trajectory and be denoted by
x̃0:T , {x̃0, ..., x̃T }. We then sample according to xit ∼ p(xt | θ,x

ai
t

0:t−1) only for
the particles i = 1, ..., N − 1. Whereas the N -th particle is set deterministically:
xNt = x̃t.

To be able to construct the N -th particle trajectory, xNt has to be associated
with an ancestor particle at time t − 1. This is done by sampling a value for
the corresponding ancestor index aNt . Following (Lindsten et al., 2014), the
ancestor sampling probabilities are computed as

w̃i
t−1|T ∝ wi

t−1

p({xi0:t−1, x̃t:T },y1:T)

p(xi0:t−1,y1:t−1)
(A.1a)

∝ wi
t−1

p({xi0:t−1, x̃t:T })
p(xi0:t−1)

(A.1b)

= wi
t−1 p(x̃t:T | xi0:t−1). (A.1c)

where the ratio is between the unnormalised target densities up to time T and
up to time t − 1, respectively. The second proportionality follows from the
mutual conditional independence of the observations, given the states. Here,
{xi0:t−1, x̃t:T } refers to a path formed by concatenating the two partial trajecto-
ries. The ancestor sampling weights {w̃i

t−1|T }
N
i=1 are then normalised to sum

to 1 and the ancestor index aNt is sampled with P (aNt = j) = wj
t−1|t.

The conditioning on a prespecified trajectory results in an important invari-
ance property of the CPF-AS. Given x̃0:T , let x̃′0:T be generated as follows:

1. Run CPF-AS from time t = 0 to time t = T , conditionally on x̃0:T .

2. Set x̃′0:T to one of the resulting particle trajectories according to P (x̃′0:T =

xi0:T) = wi
T .

For any number of particles N ≥ 2, this procedure defines an ergodic Markov
kernelMN

θ (x̃′0:T | x̃0:T), leaving the exact smoothing distribution p(x0:T | θ,y1:T)

invariant (Lindsten et al., 2014). Note that this invariance holds for any N ≥ 2,
i.e. the number of particles that are used only affects the mixing rate of the ker-

A.2. VARIATIONAL BAYES 89

Algorithm 6 CPF-AS, conditioned on x̃0:T

1. Initialise:

(a) Draw xi0 ∼ p(x0) for i = 1, ..., N − 1.

(b) Set xN0 = x̃0.

(c) For i = 1, ..., N , set equal weights wi
0 normalised to sum to 1.

2. For t = 1, ..., T do:

(a) Draw ait with P(ait = j) = wj
t−1 for i = 1, ..., N − 1.

(b) Draw xit ∼ p(xt | θ,x
ai
t

0:t−1) for i = 1, ..., N − 1.

(c) Draw aNt with P(aNt = j) ∝ wj
t−1 p(x̃t:T | θ,x

j
1:t−1).

(d) Set xNt = x̃t.

(e) For i = 1, ..., N , set wi
t ∝ p(yt | θ,xit), where the weights are normalised

to sum to 1.

nel MN
θ . However, it has been experienced in practice that the autocorrelation

drops sharply as N increases (Lindsten et al., 2014), and for many models a
moderate N is enough to obtain a rapidly mixing kernel.

A.2 VARIATIONAL BAYES

Variational inference (Jordan et al., 1999) is a popular method for approximate
Bayesian inference based on making assumptions about the posterior over la-
tent variables. In variational inference, the problem of solving intractable inte-
grals is translated into the optimisation of a cost function.

We begin by expressing the log marginal likelihood in terms of the joint
distribution over all variables and the posterior

log p(y) = log
p(x, y)

p(x|y)
. (A.2)

Taking expectations on both sides with respect to an arbitrary distribution q(x)

log p(y) = 〈log
p(x, y)

p(x|y)
〉q(x) (A.3a)

= 〈log
p(x, y) q(x)

p(x|y) q(x)
〉q(x) (A.3b)

= 〈log
p(x, y)

q(x)
+ log

q(x)

p(x|y)
〉q(x) (A.3c)

= 〈log
p(x, y)

q(x)
〉q(x)︸ ︷︷ ︸

L(q(x))

+ 〈log
q(x)

p(x|y)
〉q(x)︸ ︷︷ ︸

KL(q(x)||p(x|y))

. (A.3d)

Since a KL divergence is always greater or equal to zero (Murphy, 2012), we
have

log p(y) ≥ L(q(x)). (A.4)

90 A. APPROXIMATE BAYESIAN INFERENCE

The bound is tight if and only if q(x) = p(x|y). In other words, if the vari-
ational distribution q(x) perfectly matches the posterior. Minimisation of the
KL divergence between the variational distribution and the true posterior can
be achieved by maximising the lower bound L(q(x)). There are two main ap-
proaches to maximise the lower bound when the posterior is not analytically
tractable:

1. Choose a parametric form for the variational distribution, parameterise
it with θ and maximise the evidence lower bound with respect to those
parameters

θ∗ = arg max
θ

L(qθ(x)). (A.5)

2. Choose a particular form for the approximate posterior (e.g. q(x1, x2) =

q(x1)q(x2)) and use the calculus of variations to find the optimal distri-
butions that maximise the lower bound. In the calculus of variations op-
timisation is done with respect to functions rather than parameters. In
our case, the functions are probability distributions and need to satisfy
the constraint that they integrate to one. Finding a stationary point of the
evidence lower bound with respect to a variational distribution can be
translated to the problem of finding the distribution that is a solution to
the Euler-Lagrange differential equation. For

L(q(x)) = 〈log
p(x, y)

q(x)
〉q(x) =

∫
I (x, q(x)) dx, (A.6)

the Euler-Lagrange equation is

∂

∂q(x)
I (x, q(x)) = 0, (A.7)

∂

∂q(x)
q(x) log

p(x, y)

q(x)
= 0, (A.8)

log
p(x, y)

q∗(x)
− 1 = 0. (A.9)

Which results in the optimal variational distribution q∗(x) ∝ p(x, y) and
since p(x, y) ∝ p(x|y) we obtain the result that was expected: the ev-
idence lower bound is maximised when the variational distribution is
equal to the true posterior. In such a case the bound is tight: log p(y) =

L(q∗(x)). However, this is not particularly useful since the posterior is the
very distribution that we are trying to find. It is by making assumptions
about the variational distribution, such as q(x1, x2) = q(x1)q(x2), that
one can obtain useful results. This can be achieved by using the Euler-
Lagrange equation to find stationary points of L with respect to parts
of the variational distribution such as q(x1). The evidence lower bound
is then maximised by executing a “coordinate”-wise optimisation in the
space of variational distributions. Bishop (2006) and Murphy (2012) pro-
vide a much more thorough exposition of the calculus of variations and
variational inference.

Bibliography

Agarwal, D. K. and Gelfand, A. E. (2005). Slice sampling for simulation based fitting of
spatial data models. Statistics and Computing, 15(1):61–69. (cited in p. 40)

Alvarez, M., Luengo, D., and Lawrence, N. (2009). Latent force models. Proceedings of
the Twelfth International Conference on Artificial Intelligence and Statistics, 5:9–16. (cited
in p. 23)

Alvarez, M., Luengo, D., and Lawrence, N. (2013). Linear latent force models using
Gaussian processes. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
35(11):2693–2705. (cited in p. 23)

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov chain Monte
Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
72(3):269–342. (cited in pp. 38, 39, 46, 62, and 87)

Andrieu, C., Moulines, E., and Priouret, P. (2005). Stability of stochastic approximation
under verifiable conditions. SIAM Journal on Control and Optimization, 44(1):283–312.
(cited in p. 46)

Andrieu, C. and Vihola, M. (2011). Markovian stochastic approximation with expand-
ing projections. arXiv.org, arXiv:1111.5421. (cited in p. 46)

Barber, D., Cemgil, A. T., and Chiappa, S. (2011). Bayesian Time Series Models. Cambridge
University Press. (cited in pp. 1 and 37)

Barber, D. and Chiappa, S. (2006). Unified inference for variational Bayesian linear
Gaussian state-space models. In Advances in Neural Information Processing Systems
(NIPS), volume 20. (cited in p. 13)

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. (cited in pp. 45,
87, and 90)

Blocker, A. W. and Meng, X.-L. (2013). The potential and perils of preprocessing: Build-
ing new foundations. Bernoulli, 19(4):1176–1211. (cited in p. 76)

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994). Time Series Analysis: Forecasting
and Control. Prentice-Hall. (cited in p. 13)

Broderick, T., Boyd, N., Wibisono, A., Wilson, A. C., and Jordan, M. I. (2013). Stream-
ing variational Bayes. In Burges, C., Bottou, L., Welling, M., Ghahramani, Z., and
Weinberger, K., editors, Advances in Neural Information Processing Systems 26, pages
1727–1735. Curran Associates, Inc. (cited in p. 66)

Chen, T., Ohlsson, H., and Ljung, L. (2012). On the estimation of transfer functions,
regularizations and Gaussian processesrevisited. Automatica, 48(8):1525–1535. (cited
in p. 4)

91

92 BIBLIOGRAPHY

Damianou, A. and Lawrence, N. (2013). Deep Gaussian processes. In Carvalho, C. and
Ravikumar, P., editors, Proceedings of the Sixteenth International Workshop on Artificial
Intelligence and Statistics (AISTATS-13), AISTATS ’13, pages 207–215. JMLR W&CP 31.
(cited in p. 22)

Damianou, A. and Lawrence, N. (2015). Semi-described and semi-supervised learning
with Gaussian processes. Uncertainty in Artificial Intelligence (UAI). (cited in pp. 21
and 77)

Damianou, A. C., Titsias, M., and Lawrence, N. D. (2011). Variational Gaussian pro-
cess dynamical systems. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and
Weinberger, K., editors, Advances in Neural Information Processing Systems 24, pages
2510–2518. (cited in pp. 22 and 34)

Deisenroth, M. (2010). Efficient Reinforcement Learning using Gaussian Processes. PhD
thesis, Karlsruher Institut für Technologie. (cited in p. 42)

Deisenroth, M. and Mohamed, S. (2012). Expectation Propagation in Gaussian process
dynamical systems. In Bartlett, P., Pereira, F., Burges, C., Bottou, L., and Weinberger,
K., editors, Advances in Neural Information Processing Systems 25, pages 2618–2626.
(cited in p. 20)

Deisenroth, M., Turner, R., Huber, M., Hanebeck, U., and Rasmussen, C. (2012). Robust
filtering and smoothing with Gaussian processes. Automatic Control, IEEE Transactions
on, 57(7):1865 –1871. (cited in p. 20)

Delyon, B., Lavielle, M., and Moulines, E. (1999). Convergence of a stochastic approxi-
mation version of the EM algorithm. The Annals of Statistics, 27(1):pp. 94–128. (cited
in p. 46)

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):pp. 1–38. (cited in p. 45)

Doucet, A. and Johansen, A. (2011). A tutorial on particle filtering and smoothing: Fif-
teen years later. In Crisan, D. and Rozovsky, B., editors, Oxford Hand-book of Nonlinear
Filtering. Oxford University Press. (cited in p. 39)

Duchi, J., Hazan, E., and Singer, Y. (2011). Stochastic variational inference. Journal of
Machine Learning Research, 12:2121–2159. (cited in p. 63)

Duvenaud, D. (2014). Automatic Model Construction with Gaussian Processes. PhD thesis,
Computational and Biological Learning Laboratory, University of Cambridge. (cited
in p. 78)

Duvenaud, D., Lloyd, J., Grosse, R., Tenenbaum, J., and Zoubin, G. (2013). Structure dis-
covery in nonparametric regression through compositional kernel search. In Proceed-
ings of The 30th International Conference on Machine Learning (ICML), pages 1166–1174.
(cited in p. 13)

Ferris, B., Fox, D., and Lawerence, N. (2007). WiFi-SLAM using Gaussian process la-
tent variable models. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI). (cited in p. 18)

Foti, N., Xu, J., Laird, D., and Fox, E. (2014). Stochastic variational inference for hid-
den markov models. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and
Weinberger, K., editors, Advances in Neural Information Processing Systems 27, pages
3599–3607. Curran Associates, Inc. (cited in p. 66)

BIBLIOGRAPHY 93

Frigola, R., Chen, Y., and Rasmussen, C. E. (2014a). Variational Gaussian process state-
space models. In Advances in Neural Information Processing Systems 27 (NIPS), pages
3680–3688. (cited in pp. 55 and 66)

Frigola, R., Lindsten, F., Schön, T. B., and Rasmussen, C. E. (2013). Bayesian inference
and learning in Gaussian process state-space models with particle MCMC. In Bottou,
L., Burges, C., Ghahramani, Z., Welling, M., and Weinberger, K., editors, Advances in
Neural Information Processing Systems 26 (NIPS), pages 3156–3164. (cited in pp. 16, 37,
53, and 72)

Frigola, R., Lindsten, F., Schön, T. B., and Rasmussen, C. E. (2014b). Identification of
Gaussian process state-space models with particle stochastic approximation EM. In
19th World Congress of the International Federation of Automatic Control (IFAC), pages
4097–4102. (cited in pp. 17 and 37)

Frigola, R. and Rasmussen, C. E. (2013). Integrated pre-processing for Bayesian non-
linear system identification with Gaussian processes. In Decision and Control (CDC),
2013 IEEE 52nd Annual Conference on, pages 5371–5376. (cited in pp. 21 and 75)

Gal, Y. and Ghahramani, Z. (2015). Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In Deep Learning Workshop, ICML. (cited in p. 86)

Ghahramani, Z. (2012). Bayesian nonparametrics and the probabilistic approach to
modelling. Philosophical Transactions of the Royal Society A. (cited in pp. 4 and 45)

Ghahramani, Z. and Roweis, S. (1999). Learning nonlinear dynamical systems using an
EM algorithm. In M. J. Kearns, S. A. S. and Cohn, D. A., editors, Advances in Neural
Information Processing Systems 11. MIT Press. (cited in pp. 20, 26, and 68)

Gill, P., Golub, G., Murray, W., and Saunders, M. (1974). Methods for modifying matrix
factorizations. Mathematics of Computation, 126(28):505–535. (cited in p. 53)

Girard, A., Rasmussen, C. E., Quiñonero-Candela, J., and Murray-Smith, R. (2003).
Gaussian process priors with uncertain inputs — application to multiple-step ahead
time series forecasting. In Becker, S., Thrun, S., and Obermayer, K., editors, Advances
in Neural Information Processing Systems 15, pages 529–536, Cambridge, MA, USA. The
MIT Press. (cited in p. 14)

Gordon, N., Salmond, D., and Smith, A. (1993). Novel approach to nonlinear/non-
gaussian Bayesian state estimation. Radar and Signal Processing, IEE Proceedings F,
140(2):107–113. (cited in p. 41)

Graves, A., Mohamed, A.-R., and Hinton, G. (2013). Speech recognition with deep
recurrent neural networks. In Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on, pages 6645–6649. (cited in p. 86)

Gregorcic, G. and Lightbody, G. (2002). Gaussian processes for modelling of dynamic
non-linear systems. In Proceedings of the Irish Signals and Systems Conference, pages
141–147. (cited in p. 14)

Grimmett, G. and Stirzaker, D. (2001). Probability and Random Processes. Oxford Univer-
sity Press. (cited in p. 13)

Gutjahr, T., Ulmer, H., and Ament, C. (2012). Sparse Gaussian processes with uncertain
inputs for multi-step ahead prediction. In Proceedings of the 16th IFAC Symposium on
System Identification (SYSID), volume 16, pages 107–112. (cited in p. 15)

Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press. (cited in p. 1)

Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data.
Conference on Uncertainty in Artificial Intelligence, (UAI). (cited in pp. 33 and 34)

94 BIBLIOGRAPHY

Hensman, J., Matthews, A., and Ghahramani, Z. (2015). Scalable variational Gaussian
process classification. 18th International Conference on Artificial Intelligence and Statis-
tics, (AISTATS). (cited in pp. 33 and 34)

Hinton, G. (2012). Lecture 6: Stochastic optimisation. Coursera: Neural Networks for
Machine Learning. (cited in p. 63)

Hjalmarsson, H., Rojas, C. R., and Rivera, D. E. (2012). System identification: A Wiener-
Hammerstein benchmark. Control Engineering Practice, 20(11):1095 – 1096. (cited in
p. 81)

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013). Stochastic variational
inference. Journal of Machine Learning Research, 14:1303–1347. (cited in p. 65)

Isermann, R. and Münchhof, M. (2011). Identification of Dynamic Systems, An Introduction
with Applications. Springer. (cited in pp. 3 and 4)

Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. International Journal
of Bifurcation and Chaos, 10(06):1171–1266. (cited in p. 73)

Jaynes, E. T. (2003). Probability Theory, The Logic of Science. Cambridge University Press.
(cited in p. 2)

Jordan, M. I. (2013). On statistics, computation and scalability. Bernoulli, 19:1378–1390.
(cited in p. 76)

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction to
variational methods for graphical models. Machine Learning, 37(2):183–233. (cited in
pp. 56 and 89)

Kingma, D. P. and Ba, J. L. (2015). Adam: A method for stochastic optimization. Inter-
national Conference on Learning Representations (ICLR 2015). (cited in p. 63)

Ko, J. and Fox, D. (2011). Learning GP-BayesFilters via Gaussian process latent variable
models. Autonomous Robots. (cited in p. 20)

Kocijan, J., Girard, A., Banko, B., and Murray-Smith, R. (2003). Dynamic systems identi-
fication with Gaussian processes. IEEE Region 8 EUROCON: computer as a tool, A:352–
356. (cited in p. 14)

Lawrence, N. D. (2005). Probabilistic non-linear principal component analysis with
gaussian process latent variable models. Journal of Machine Learning Research, 6:1783–
1816. (cited in p. 22)

Lawrence, N. D. and Moore, A. J. (2007). Hierarchical Gaussian process latent variable
models. In Proceedings of the 24th International Conference on Machine learning, pages
481–488. (cited in p. 22)

Lázaro-Gredilla, M., Quiñonero-Candela, J., Rasmussen, C. E., and Figueiras-Vidal,
A. R. (2010). Sparse spectrum Gaussian process regression. Journal of Machine Learn-
ing Research, 11:1865–1881. (cited in p. 69)

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521:436–444. (cited
in pp. 34, 67, and 86)

Lindsten, F. (2013). An efficient stochastic approximation EM algorithm using condi-
tional particle filters. In Proceedings of the 38th IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), pages 6274–6278. (cited in p. 46)

Lindsten, F., Jordan, M. I., and Schön, T. B. (2014). Particle Gibbs with ancestor sampling.
Journal of Machine Learning Research, 15:2145–2184. (cited in pp. 39, 46, 53, 87, 88,
and 89)

BIBLIOGRAPHY 95

Lindsten, F. and Schön, T. B. (2013). Backward simulation methods for Monte Carlo
statistical inference. Foundations and Trends in Machine Learning, 6(1):1–143. (cited in
pp. 39 and 47)

Ljung, L. (1999). System Identification: Theory for the User. Prentice Hall, second edition.
(cited in pp. 1, 2, 7, 13, and 76)

Ljung, L. (2012). System Identification ToolboxTMUser’s Guide (R2012b). The MathWorks.
(cited in pp. 81 and 83)

MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms. Cambridge
University Press. (cited in pp. 3, 11, 45, and 59)

Matthews, A. G. d. G., Hensman, J., Turner, R. E., and Ghahramani, Z. (2015). On
sparse variational methods and the Kullback-Leibler divergence between stochastic
processes. arXiv:1504.07027. (cited in p. 31)

McHutchon, A. (2014). Nonlinear Modelling and Control using Gaussian Processes. PhD
thesis, University of Cambridge. (cited in pp. 17, 20, 38, 39, 47, and 68)

McHutchon, A. and Rasmussen, C. E. (2011). Gaussian process training with input
noise. In Advances in Neural Information Processing Systems 25, Granada, Spain. (cited
in pp. 21 and 77)

McHutchon, A. and Rasmussen, C. E. (2014). Comparing learning in Gaussian process
state space models. submitted. (cited in p. 17)

Micchelli, C. A., Xu, Y., and Zhang, H. (2006). Universal kernels. Journal of Machine
Learning Research, 7:2651–2667. (cited in p. 26)

Mizuseki, K., Sirota, A., Pastalkova, E., Diba, K., and Buzski, G. (2013). Multiple single
unit recordings from different rat hippocampal and entorhinal regions while the ani-
mals were performing multiple behavioral tasks. CRCNS.org. http://dx.doi.org/
10.6080/K09G5JRZ. (cited in p. 72)

Murphy, K. P. (2012). Machine Learning, a Probabilistic Perspective. MIT Press. (cited in
pp. 37, 89, and 90)

Murray, I., Adams, R. P., and MacKay, D. J. (2010). Elliptical slice sampling. JMLR:
W&CP, 9:541–548. (cited in p. 11)

Neal, R. M. (2003). Slice sampling. Ann. Statist., 31(3):705–767. (cited in p. 40)

Neal, R. M. and Hinton, G. E. (1998). A view of the EM algorithm that justifies incremen-
tal, sparse, and other variants. In Jordan, M. I., editor, Learning in Graphical Models,
volume 89 of NATO ASI Series, pages 355–368. Springer. (cited in p. 65)

Nguyen, T. V. and Bonilla, E. V. (2014). Automated variational inference for Gaussian
process models. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and Wein-
berger, K., editors, Advances in Neural Information Processing Systems 27, pages 1404–
1412. (cited in p. 11)

Opper, M. (1998). A Bayesian approach to on-line learning. In Saad, D., editor, On-Line
Learning in Neural Networks. Cambridge University Press. (cited in p. 66)

Orbanz, P. (2014). Lecture notes on Bayesian nonparametrics. Columbia University. (cited
in p. 4)

Overschee, P. V. and Moor, B. D. (1996). Subspace Identification for Linear Systems: Theory
Implementation Applications. Kluwer. (cited in pp. 13 and 72)

http://dx.doi.org/10.6080/K09G5JRZ
http://dx.doi.org/10.6080/K09G5JRZ

96 BIBLIOGRAPHY

Peterka, V. (1981). Bayesian system identification. Automatica, 17(1):41 – 53. (cited in
pp. 2 and 4)

Quiñonero-Candela, J., Girard, A., Larsen, J., and Rasmussen, C. E. (2003). Propaga-
tion of uncertainty in Bayesian kernel models - application to multiple-step ahead
forecasting. In ICASSP 2003, volume 2, pages 701–704. (cited in p. 72)

Quiñonero-Candela, J. and Rasmussen, C. E. (2005). A unifying view of sparse approx-
imate Gaussian process regression. Journal of Machine Learning Research, 6:1939–1959.
(cited in pp. 33, 34, 51, 52, 81, and 83)

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning.
The MIT Press. (cited in pp. 5, 8, 9, 11, 19, 27, 48, 49, 51, and 83)

Robbins, H. and Monro, S. (1951). A stochastic approximation method. Ann. Math.
Statist., 22(3):400–407. (cited in p. 46)

Roberts, S., Osborne, M., Ebden, M., Reece, S., Gibson, N., and Aigrain, S. (2012). Gaus-
sian processes for time-series modelling. Philosophical Transactions of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, 371(1984). (cited in p. 13)

Särkkä, S. (2013). Bayesian Filtering and Smoothing. Cambridge University Press. (cited
in pp. 62 and 66)

Schoukens, J., Suykens, J., and Ljung, L. (2009). Wiener-Hammerstein benchmark. In
Symposium on System Identification (SYSID) Special Session, volume 15. (cited in p. 81)

Shalizi, C. (2008). Book review: “Hidden Markov models and dynamical sys-
tems” by Andrew M. Fraser. The Bactra Review, http: // bactra. org/ reviews/
fraser-on-HMMs/ , (139). (cited in p. 25)

Shumway, R. H. and Stoffer, D. S. (1982). An approach to time series smoothing and
forecasting using the EM algorithm. Journal of Time Series Analysis, 3(4):253–264. (cited
in pp. 13 and 26)

Shumway, R. H. and Stoffer, D. S. (2011). Time Series Analysis and Its Applications.
Springer. (cited in pp. 1 and 2)

Snelson, E. and Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-inputs.
In Weiss, Y., Schölkopf, B., and Platt, J., editors, Advances in Neural Information Process-
ing Systems 18, pages 1257–1264. The MIT Press, Cambridge, MA. (cited in pp. 51, 52,
and 80)

Solin, A. and Särkkä, S. (2014). Hilbert space methods for reduced-rank Gaussian pro-
cess regression. arXiv preprint arXiv:1401.5508. (cited in p. 69)

Spiegelhalter, D. and Rice, K. (2009). Bayesian statistics. Scholarpedia, 4(3):5230. (cited
in p. 3)

Sutskever, I. (2013). Training Recurrent Neural Networks. PhD thesis, University of
Toronto. (cited in pp. 34, 67, and 86)

Svensson, A., Solin, A., Särkkä, S., and Schön, T. B. (2015). Computationally efficient
Bayesian learning of Gaussian process state space models. arXiv:1506.02267. (cited in
p. 69)

Titsias, M. and Lawrence, N. (2010). Bayesian Gaussian process latent variable model. In
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statis-
tics (AISTATS), volume 9, pages 844–851. (cited in pp. 22 and 34)

http://bactra.org/reviews/fraser-on-HMMs/
http://bactra.org/reviews/fraser-on-HMMs/

BIBLIOGRAPHY 97

Titsias, M. K. (2009). Variational learning of inducing variables in sparse Gaussian pro-
cesses. Twelfth International Conference on Artificial Intelligence and Statistics, (AISTATS),
pages 567–574. (cited in pp. 33, 34, 52, 55, 56, 59, 63, 80, and 81)

Titsias, M. K. and Lázaro-Gredilla, M. (2014). Doubly stochastic variational Bayes for
non-conjugate inference. 31st International Conference on Machine Learning (ICML).
(cited in p. 66)

Tsay, R. S. (2013). Multivariate Time Series Analysis. Wiley. (cited in p. 1)

Turner, R. D. (2011). Gaussian Processes for State Space Models and Change Point Detection.
PhD thesis, University of Cambridge. (cited in p. 13)

Turner, R. D., Deisenroth, M. P., and Rasmussen, C. E. (2010). State-space inference
and learning with Gaussian processes. In Teh, Y. W. and Titterington, M., editors,
13th International Conference on Artificial Intelligence and Statistics, volume 9 of W&CP,
pages 868–875, Chia Laguna, Sardinia, Italy. Journal of Machine Learning Research.
(cited in pp. 17, 20, and 68)

Turner, R. E., Rasmussen, C. E., van der Wilk, M., Bui, T. D., and Frigola, R. (2015).
Gaussian process state space models. Unpublished Note, January 2015. (cited in
p. 30)

Turner, R. E. and Sahani, M. (2011). Two problems with variational expectation max-
imisation for time-series models. In Barber, D., Cemgil, T., and Chiappa, S., editors,
Bayesian Time Series Models, chapter 5, pages 109–130. Cambridge University Press.
(cited in p. 59)

Wang, J., Fleet, D., and Hertzmann, A. (2006). Gaussian process dynamical models. In
Weiss, Y., Schölkopf, B., and Platt, J., editors, Advances in Neural Information Processing
Systems 18, pages 1441–1448. MIT Press, Cambridge, MA. (cited in pp. 19, 20, and 29)

Wang, J., Fleet, D., and Hertzmann, A. (2008). Gaussian process dynamical models
for human motion. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
30(2):283–298. (cited in pp. 19 and 20)

Wu, Y., Hernandez-Lobato, J. M., and Ghahramani, Z. (2014). Gaussian process volatil-
ity model. arXiv:1402.3085v1 [stat.ME]. (cited in p. 17)

	Introduction
	Time Series Models
	Bayesian Nonparametric Time Series Models
	Bayesian Methods
	Bayesian Methods in System Identification
	Nonparametric Models

	Contributions

	Time Series Modelling with Gaussian Processes
	Introduction
	Gaussian Processes
	Gaussian Processes for Regression
	Graphical Models of Gaussian Processes

	A Zoo of GP-Based Dynamical System Models
	Linear-Gaussian Time Series Model
	Nonlinear Auto-Regressive Model with GP
	State-Space Model with Transition GP
	State-Space Model with Emission GP
	State-Space Model with Transition and Emission GPs
	Non-Markovian-State Model with Transition GP
	GP-LVM with GP on the Latent Variables

	Why Gaussian Process State-Space Models?

	Gaussian Process State-Space Models – Description
	GP-SSM with State Transition GP
	An Important Remark
	Marginalisation of f1:T
	Marginalisation of f(x)

	GP-SSM with Transition and Emission GPs
	Equivalence between GP-SSMs

	Sparse GP-SSMs
	Summary of GP-SSM Densities

	Gaussian Process State-Space Models – Monte Carlo Learning
	Introduction
	Fully Bayesian Learning
	Sampling State Trajectories with PMCMC
	Sampling the Hyper-Parameters
	Making Predictions
	Experiments

	Empirical Bayes
	Particle Stochastic Approximation EM
	Making Predictions
	Experiments

	Reducing the Computational Complexity
	FIC Covariance Function
	Sequential Construction of Cholesky Factorisations

	Conclusions

	Gaussian Process State-Space Models – Variational Learning
	Introduction
	Evidence Lower Bound of a GP-SSM
	Interpretation of the Lower Bound
	Properties of the Lower Bound
	Are the Inducing Inputs Variational Parameters?

	Optimal Variational Distributions
	Optimal Variational Distribution for u
	Optimal Variational Distribution for x

	Optimising the Evidence Lower Bound
	Alternative Optimisation Strategy

	Making Predictions
	Extensions
	Stochastic Variational Inference
	Online Learning

	Additional Topics
	Relationship to Regularised Recurrent Neural Networks
	Variational Learning in Related Models
	Arbitrary Mean Function Case

	Experiments
	1D Nonlinear System
	Neural Spike Train Recordings

	Filtered Auto-Regressive Gaussian Process Models
	Introduction
	End-to-End Machine Learning
	Algorithmic Weakening

	The GP-FNARX Model
	Choice of Preprocessing and Covariance Functions

	Optimisation of the Marginal Likelihood
	Sparse GPs for Computational Speed
	Algorithm
	Experiments

	Conclusions
	Contributions
	Future work

	Approximate Bayesian Inference
	Particle Markov Chain Monte Carlo
	Particle Gibbs with Ancestor Sampling

	Variational Bayes

